_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Методы уменьшения шумов и повышения помехоустойчивости ЭВМ

Методы уменьшения шумов и повышения помехоустойчивости ЭВМ

Страница: 3/4

  Есть 2 общие реализации SMP,известные как сильносвязанная и слабосвязанная.Сильносвязанная базируется на схеме,согласно которой процессоры совместно используют данные из совокупности общих ресурсов,прежде всего,из общей памяти.

  Слабосвязанные системы используют механизм обмена сообщениями между процессами для совместного использования ресурсов,когда это необходимо.В некоторых слабосвязанных системах  каждый процессор может даже иметь свой собственный контроллер диска и другие подсистемы.

  Чтобы полнее воспользоваться преимуществами SMP при организации многозадачности,выполнение нитей процесса контролируется с помощью приоритетных прерываний.

Приоритетное прерывание позволяет ОС поддерживать контроль над программами:какую программу и когда запускать,так что сбившиеся программы не могут поработить систему и вызвать проблемы.

  Основным преимуществом такой архитектуры является то, что прикладные программы имеют в своем распоряжении столько ЦП,сколько имееется в наличии у сервера.Т.к. ОС занимается планированием работы процессоров,прикладным программам нет

необходимости знать о количестве имеющихся процессоров.ОС назначит каждую нить первому свободному процессору.

Программа-планировщик в ядре ОС позволяет распределять нагрузку и в конечном итоге выполнять программы точно с той же скоростью,с какой несколько ЦП могуут с ними справиться.

 

Масштабируемость.Конфликты на шине.

 

 Часто встречающиеся словосочетания типа "несколько процессоров","многопроцессорные системы" и т.п. наводят на вопрос,можно ли сказать,чему равно оптимальное число

процессоров в системе?

  Необходимо иметь в виду,что эффективность не растет линейно при добавлении еще одного процессора.Вернее,она растет линейно с увеличением числа процессоров только до тех пор,пока не наступают ограничения,связанные с проблемами соединения с общей шиной.Согласно известному предположению Минского для широкого класса алгоритмов конфликт между N процессорами с коллективным распределением ресурсов,

соединенными с общей шиной, ограничивает повышение производительности величиной log2N.

Современные конструкторы "суперкомпьютеров" использовали ряд параллельных структур и достигли повышения производительности в соответствиис законом Амдала:N/log2N.

  Рассмотрим подробнее суть конфликтов на шине.Сетевая ОС должна управлять каждым процессором и,следовательно, взаимодействием процессора с внутренними вызовами и периферийными устройствами на шине(поэтому,собственно,

производительность и не растет линейно).Когда нить в однопроцессорной системе не может более выполняться до осуществления некоторого условия,процессор маскирует программное прерывание так,что никакой другой процесс не может воспользоваться данным ресурсом.Затем он сохраняет состояние нити,чтобы выполнение кода могло возобновиться при осуществлении условия.

  В системе с одним процессором маскированное прерывание предотвращает использование процессором ресурса.Кроме того,достаточно просто сохранять описание уровней прерывания и масок,контролирующих доступ к структурам данных ОС.С добавлением каждого нового процессора эта задача становится все более трудной.ОС для SMP-платформы должна уточнить,что только один процессор в данный момент выполняет сегмент кода,который меняет глобальную структуру данных.Словом,в SMP-среде этот механизм (маскированное прерывание) не гарантирует,что различные процессы не будут иметь доступа к тому же самому ресурсу через другое прерывание.

  Для управления прерываниями между процессорами иногда используется(например,Windows NT Advanced Server)метод взаимоблокировки.По сути,взаимоблокировка является программной процедурой,которая блокирует доступ второго

процессора к уже занятому ресурсу.Такой метод позволяет предотвратить порчу процессорами глобальных структур данных,однако при непродуманной реализации он может привести к тому,что процессоры будут бездействовать в течение длительного периода,ожидая освободившийся замок блокировки.

  По мере добавления новых процессоров к системе накладные расходы на управление конфликтами возрастают,и это уменьшает отдачу от ОС,ориентированных на симметрично-многопроцессорную обработку.Это обстоятельство по идее будет как сейчас,так и впредь ограничивать число процессоров,

которое оправдано установить в SMP-платфорфу.

Действительно,наиболее узким местом,как установлено,является системная шина,а ее пропускная способность,несмотря на все

нововведения, только-только поспевает за ростом

производительности ЦП,а тут еще надо справиться с ростом их числа.

 

  Спецификация многопроцессорных систем компании Intel.

 

На основе вышеизложенного можно получить некоторое представление о многопроцессорных(МП) системах,в частности,о SMP-платформах.В качестве конкретного примера использования многопроцессорных систем рассмотрим их спецификацию,

предложенную компанией Intel(MPS-MultiProcessor Specification V.1.1).Главная цель спецификации-определить стандартный интерфейс для многопроцессорных платформ,который позволит расширить область применения PC/AT-платформ по сравнению с традиционными платформами,в то же время сохраняя полную совместимость с PC/AT на уровне программ(термин "PC/AT-совместимость" используется,чтобы характеризовать компоненты,видимые(доступные)для программных средств).

  Сердцем спецификации являются структуры данных, определяющие конфигурацию МП-системы.Эти структуры данных создает ВIOS,в известном формате представляя аппаратные средства стандартным драйверам устройств или Уровню Изоляции Аппаратуры(HAL-Hardware Abstraction Layer)ОС. Спецификация определяет задаваемые по умолчанию конфигурации аппаратуры,и в целях большей гибкости определяет расширения для стандартного BIOS.

рис.7.Концептуальные понятия.

1.Операционная система

2.Уровень абстрагирования от аппаратных средств

3.BIOS МП-системы

4.Структуры данных,задающих конфигурацию МП-системы

5.Аппаратные средства

 

  В спецификации рассматриваются следующие вопросы:

-создание на основе PC/AT-платформ многопроцессорных систем,     которые могут исполнять существующие программы для    однопроцессорных и многопроцессорных микроядерных ОС.

-поддержка APIC(МП-контроллера прерываний)для обработки     симметричного ввода-вывода.

-возможность использовать BIOS с минимальной настройкой на     конкретную МП-систему.

-таблица факультативных МП-конфигураций с информацией о       конфигурации.

-включение ISA и других промышленных стандартов на шины,      такие,как EISA,MCA,VL и PCI в МП-совместимые системы.

-требования,обеспечивающие прозрачную(для программного     обеспечения)реализацию вторичной шины кэша и памяти.

  Минимальный набор аппаратных средств,который необходим для  реализации МП-спецификации,таков:

-один или несколько процессоров,по набору команд совместимых    с архитектурой семейств процессоров Intel 486 и Pentium;

-один или несколько контроллеров APIC на процессорах      Pentium 735/90 или 815/100;

-прозрачные для программ подсистемы кэшей и лбщей памяти;

-видимые для программ компоненты PC/AT-платформ.

  Документ также определяет свойства МП-систем,видимые для BIOS и ОС.Однако надо учитывать,что по мере развития технологии выполняемые BIOS функции могут изменяться.

 

Общая структура МП-системы

 

 При построении многопроцессорной архитектуры может использоваться одна из нескольких концептуальных моделей соединения вычислительных элементов,а также множество схем взаимосвязи и вариантов реализации.

  На рисунке показана общая структура МП-системы,построенной на основе спецификации MPS 1.1.В нее входит сильно связанная архитектура с общей памятью с распределенной обработкой данных и прерываний ввода-вывода.Она полностью симметрична; т.е.все процессоры функционально идентичны и имеют одинаковый статус,и каждый процессор может обмениваться с каждым другим процессором.Симметричность имеет два важных аспекта:симметричность памяти и ввода-вывода.

 Память симметрична,если все процессоры совместно используют общее пространство памяти и имеют в этом пространстве доступ с одними и теми же адресами.Симметричность памяти предполагает,что все процессоры могут исполнять единственную копию ОС.В таком случае любые существующие системы и прикладные программы будут работать одинаково,независимо от числа установленных в системе процессоров.

  Требование симметричности ввода-вывода выполняется,если все процессоры имеют возможность доступа к одним и тем же подсистемам ввода-вывода(включая порты и контроллеры прерывания),причем любой процессор может получить прерывание от любого источника.Некоторые МП-системы,имеющие симметричный доступ к памяти,в то же время являются асимметричными по отношению к прерываниям устройств ввода-вывода,поскольку выделяют один процессор для обработки прерываний.Симметричность ввода-вывода помогает убрать потенциально узкие места ввода-вывода и тем самым повысить расширяемость системы.

  Системы,удовлетворяющие МП-спецификации,обладают симметричностью  памяти и ввода-вывода,что позволяет обеспечить расширяемость аппаратных средств,а также стандартизовать программные средства.

1.ЦП                            7.Шины коммуникаций контроллера прерываний

2.Контроллер прерываний APIC    8.Модуль общей памяти

3.Контроллер шины памяти        9.Буфер графических фреймов

4.Контроллеры кэша              10.Контроллер прерываний APIC

5.Кэш-память                    11.Интерфейс ввода-вывода         

6.Высокопроизводительная шина   12.Шина расширения ввода-вывода

  памяти

Рис8.Архитектура МП-системы.

 

 

Основные компоненты

 

МП-спецификация определяет системную архитектуру на основе следующих компонентов аппаратуры:системные процессоры, контроллеры APIC,системная память,шина расширения ввода-вывода.

  Системные процессоры.В целях обеспечения совместимости с существующими программными средствами для PC/AT,спецификация основывается на процессорах семейства Intel 486 или Pentium. Хотя все процессоры в МП-системе функционально идентичны, спецификация выделяет два их типа:загрузочный процессор(BSP) и прикладные процессоры(AP).Какой процессор играет роль загрузочного,определяется аппаратными средствами или совместно аппаратурой и BIOS.Это сделано для удобства и имеет значение только во время инициализации и выключения. BSP-процессор отвечает за инициализацию системы и за загрузку ОС.AP-процессор активизируется после загрузки ОС.

  Контроллеры APIC.Данные контроллеры обладают распределенной архитектурой,в которой функции управления прерываниями распределены между двумя функциональными блоками:локальным и ввода-вывода.Эти блоки обмениваются информацией через шину,называемую шиной коммуникаций контроллера прерываний(ICC-interrupt communication controller).

  В МП-системе множество локальных блоков и блоков ввода-вывода могут коллективно использовать одну запись, взаимодействуя через шину ICC.Блоки APIC совместно отвечают за доставку прерывания от источника прерываний до получателей по всей МП-системе.

  Блоки APIC дополнительно увеличивают расширяемость за счет разгрузки шины памяти от трафика прерываний,а также разделения между процессорами нагрузки по обработке прерываний.

  Благодаря распределенной архитектуре,локальные блоки или  блоки ввода-вывода могут быть реализованы в отдельной микросхеме или интегрированы с другими компонентами системы.

 Системная память.В системах,совместимых с МП-спецификацией, используется архитектура памяти стандарта AT.Вся память используется как системная за исключением адресов,

зарезервированных под устройства ввода-вывода и BIOS.

  МП-системы нуждаются в значительно более высокой пропускной способности по сравнению с однопроцессорными. Требования возрастают пропорционально числу процессоров на шине памяти.Поэтому спецификация содержит рекомендации использовать кэши второго уровня,призванные снизить трафик по шине и реализующие следующие функции:стратегия обновления с обратной записью и протокол определения согласованности кэшей.От кэшей второго уровня и контроллеров шины памяти требуется,чтобы они были полностью прозрачны для программных средств.

  Шина расширения ввода-вывода.Спецификация обесречивает построение МП-систем на основе платформ PC/AT,отвечающих промышленным стандартам.В проектах могут быть использованы стандартные шины ISA,EISA,MCA,VL и PCI.   

  BIOS выполняет функции слоя,изолирующего особенности аппаратных средств от ОС и программных приложений. Стандартный однопроцессорный BIOS выполняет следующие функции:проверяет системные компоненты;строит таблицы конфигурации,используемые ОС;инициализирует процессор и всю остальную систему.

  В многопроцессорных системах BIOS дополнительно выполняет следующие функции:передает информацию о конфигурации в ОС, которая идентифицирует все процессоры и другие компоненты МП-систем;переводит все процессоры и другие компоненты многопроцессорной системы в заданное состояние.

  Одна из главных целей этой спецификации состоит в том, чтобы обеспечить возможность построения микроядерных ОС

для многопроцессорных систем.Это достигается благодаря гибкому балансу между возможностями аппаратуры и BIOS. Посредством BIOS потенциально огромное разнообразие аппаратных конфигураций уменьшается всего до нескольких вариантов,которые могут быть обработаны на начальной загрузочной фазе работы ОС.

 

Спецификация аппаратных средств.  

 

 Для того,чтобы ОС могла работать на многопроцессорных платформах,аппаратные средства должны обладать определенным набором свойств.Их спецификация определяет способ реализации компонентов,перечисленных в предыдущем разделе.Соответствие