_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Дипломные работы > Аппаратные средства ПК

Аппаратные средства ПК

Страница: 7/8

С интерфейсом Serial ATA установка новых дисковых накопителей и модернизация системы становится удобной как никогда. Serial ATA использует простые разъемы типа socket вместо традиционных 40-штырьковых разъемов - подключить новый дисковый накопитель к системе теперь так же просто, как подключить телефон к зарядному устройству. Более тонкие и более длинные кабели более удобны в обращении, а возможность "горячего" подключения значительно упрощает переконфигурацию системы. С появлением Serial ATA исчезает необходимость переставлять крохотные джамперы master/slave на каждом дисковом накопителе. Накопители с интерфейсом Serial ATA повышают общую надежность системы, а технология "32-битной циклической избыточной проверки" (32-bit Cyclic Redundancy Checking) обеспечивает сохранность данных, команд и статусной информации. Более надежные кабельные соединения снижают вероятность наведенных помех, а небольшие размеры кабеля способствуют лучшей вентиляции системного блока.

Связь компьютера с «внешним миром»

Модем

Modem - модем (MOdulator-DEModalator модулятор-демодулятор). Устройство, которое преобразует цифровые сигналы компьютера в аналоговые сигналы для дальнейшей передачи по телефонным линиям, а затем осуществляет обратное преобразование.

Как работает модем

Модем представляет собой устройство, имеющее, с внешней точки зрения, цифровой интерфейс c компьютером (обычно последовательный порт RS-232) и аналоговый интерфейс с каналом связи (телефонной линией) - разъем для телефонного кабеля (RJ-12). "Внутри" модем представляет собой микрокомпьютер с достаточно мощным процессором (иногда несколькими), постоянной и оперативной памятью, и аналоговой частью, ответственной за сопряжение модема с телефонной сетью - устройство набора номера, усилитель, АЦП и ЦАП - Аналого-Цифровой и Цифро-Аналоговый Преобразователи, ответственные за преобразование сигнала из аналоговой формы (непрерывный сигнал-напряжение) в цифровую (отдельные отсчеты сигнала, дискретизованные по времени и квантованные по напряжению), и наоборот, соответственно. Практически все современные модемы производят обработку информации в цифровой форме, без сколь-либо сложной аналоговой предобработки, так как это позволяет добиться высокой стабильности и в значительной степени упростить разработку и анализ алгоритмов. При этом обычно частота дискретизации (скорость следования отдельных отсчетов оцифрованного сигнала) находится в пределах 7-12 тысяч отсчетов в секунду (килоГерц, kHz). Теоретически, частота дискретизации должна быть как минимум в два раза выше максимальной частоты сигнала, для того, чтобы сигнал был представим отдельными отсчетами без потерь. Количество уровней квантования для ЦАП и АЦП современных модемов достигает десятков тысяч. Обычно, поскольку с "цифровой стороны" ЦАП и АЦП пишутся или читаются в виде числа, говорят о количестве разрядов у ЦАП/АЦП, т.е., количестве разрядов двоичного числа, требуемого для представления всех возможных уровней, например, 16-разрядный АЦП может распознавать 65536 уровней, обозначаемых числами от -32768 до +32767.

Давайте посмотрим на это устройство вот с какой стороны: понятно, что его задача - пересылать информацию с одного компьютера на другой. В случае работы в Интернете - с компьютера клиента на компьютер провайдера, и наоборот. Дабы упростить себе жизнь, будем пока считать, что модем выполняет всего одну, примитивную функцию - модулятора-демодулятора цифрового сигнала (кстати, именно отсюда и взялось сокращение - модем). Будем считать, что он уже набрал номер, установил соединение, начал передавать и принимать данные, и нам интересен пока лишь процесс, как байты информации идут от удаленной стороны к нам, и наоборот. Как же это происходит?

Рассмотрим подробнее, как же модем кодирует сигнал и как помехи этому мешают. Наиболее популярные ныне протоколы передачи данных - V.34 и V.32 - используют амплитудно-фазовую модуляцию сигнала. Базовый сигнал - несущая синусоида определенной протоколом частоты при передаче модулируется, т.е. подвергаются изменению ее амплитуда, то есть уровень, и фаза (сдвиг фазы сигнала относительно немодулированной "исходной" синусоиды). При этом состояния сигнала, характеризующиеся неизменной амплитудой и фазой, последовательно сменяют друг друга. Каждое такое состояние кодирует небольшое количество битов данных и называется одним символом (не путать с буквами и цифрами). Скорость, с которой символы сменяют друг друга, называется символьной скоростью (Symbol rate в статистике модема). Она определяется протоколом, для V.32 она всегда равна 2400 символов в секунду, для V.34 может достигать 3429 символов в секунду. Таким образом, у нас уже два параметра - символьная скорость и частота несущей.

Когда один символ сменяется другим, происходит изменение (увеличение или уменьшение) амплитуды и сдвиг фазы ("вперед" или "назад") сигнала. Мгновенно ни амплитуда, ни фаза измениться не могут - это потребовало бы бесконечной скорости изменения сигнала (напряжения и тока) в канале, т.е. неограниченной полосы пропускания канала. Обычно же требуется передать максимум информации, заняв отведенный диапазон частот. Минимальный диапазон частот, требующийся для передачи сигнала, в котором фаза меняется максимально быстро (худший случай с точки зрения занятия полосы частот) вперед или назад, то есть, на половину периода несущей за один символьный интервал, в точности равен символьной скорости в Гц. Например, если фаза сигнала должна сдвигаться вперед на половину периода несущей за время передачи одного символа, частота сигнала в ходе этого перехода как минимум должна достигать ((исходной частоты несущей) + (символьная скорость)/2). В противном случае будет накапливаться "отставание" фазы сигнала от требуемой.

Для того, чтобы "вписать" сигнал в этот минимально необходимый диапазон частот, переходы между символами сглаживаются с тем, чтобы скорость изменения сигнала (и его частота, соответственно) не превышала это ограничение. Например, если требуется существенный сдвиг фазы "вперед", этот сдвиг происходит не мгновенно, а постепенно. В течение этого переходного периода частота сигнала в канале будет выше исходной частоты несущей (слышимый тон - выше), поскольку для сдвига фазы вперед требуется более быстрое изменение сигнала. И наоборот, для сдвига фазы назад требуется замедление изменения сигнала, и слышимый ухом тон - ниже. А поскольку такие переходы происходят часто (с символьной скоростью, т.е., более 2000 раз в секунду), и требуемые величины изменения фазы сигнала достаточно случайны, в результате, когда модем передает данные, мы слышим не ровный тон, или последовательность тонов, а "шипение", т.е., в среднем все частоты в рабочей полосе используются одинаково часто. Если рассмотреть спектр сигнала за длительный период времени, он будет равномерным, с центром, совпадающим с частотой исходной несущей, простирающимся в ширину симметрично влево и вправо от центральной частоты несущей на полосы частот, равные половине символьной скорости.

Таким образом, для рассматриваемых протоколов ширина спектра сигнала равна символьной скорости.

Остановимся пока на этом, и посмотрим, что же предоставляет нам телефонная линия. А предоставляет она нам обязательство пропускать наши сигналы до удаленного абонента в полосе частот от 300 до 3400 герц, и, будем надеяться, без искажений. Очевидно, что модем должен выбрать такую несущую и такую символьную скорость, чтобы несущая поместилась ровно посередине между 300 и 3400, а символьная скорость была в точности равна 3400-300. Это - необходимое и достаточное условие для того, чтобы спектр сигнала модема ровно занял весь предоставляемый канал. Если он займет меньше, значит часть канала будет неиспользована, и модем сможет передать меньше информации, чем мог бы. Если он займет больше, то часть спектра будет обрезана и удаленный модем его не получит, а, стало быть, не получит и части передаваемой информации. Вообще, есть теоретический предел пропускной способности канала, который нельзя превысить никакими силами. Сколько бы мы ни старались, и как бы мы ни приспосабливали форму нашего сигнала к параметрам линии, мы не сможем передать информации больше этого теоретического предела. Таким образом, главная задача модема - так приспособиться к каналу, чтобы передать через него все, что канал может пропустить.

Продолжим теперь про модуляцию. К паре параметров сигнала - центральной частоте и ширине спектра (т.е. частоте несущей и символьной скорости) нам надо знать про третий определяющий параметр - назовем его глубиной модуляции. Хотя это не до конца правильный термин в данном применении, но сильно похож. Он говорит о том, сколько разных состояний может быть у передаваемого сигнала. Вспомним, что модем передает один символ (не букву!), какое-то время. А затем - другой символ. Символы отличаются друг от друга. Так сколько же всего может быть разных символов? Это зависит, главным образом, от того, сколько разных амплитуд и фаз мы можем передать в канал так, чтобы с противоположной стороны их еще не путали друг с другом. Иными словами, сколько градаций по амплитуде и фазе мы можем выбрать так, чтобы с той стороны они еще однозначно отличались. Как несложно посчитать, например 16 градаций по амплитуде и 16 по фазе дают 16*16=256 различных состояний сигнала, с помощью которых можно закодировать 8 битов информации. В этом случае при символьной скорости, например, в 1000 символов в секунду мы получим скорость передачи информации ровно 8000 битов в секунду. Если глубина модуляции меньше, то есть число состояний сигнала всего 32, к примеру, то мы получим 5 бит за символ, то есть 5 килобит в секунду. Если символьная скорость возрастет до 2000, это будет уже 10 килобит в секунду.

На протоколе V.32 каждый символ соответствует группе бит. При этом эта группа, очевидно, состоит из целого числа бит - от 2 до 6. А поскольку символьная скорость равняется 2400 символов в секунду, добавление очередного бита в группу (и увеличение количества используемых символов в два раза, соответственно), приводит к увеличению битовой скорости на 2400бит/с. Именно поэтому поддерживаемые V.32 скорости - от 4800 до 14400 бит/с с шагом в 2400. Протокол V.34 кодирует символы не по одному, а группами по 8 (так называемыми "кадрами отображения", mapping frames). При этом каждая группа имеет некоторые параметры (амплитудную огибающую), общие для всех 8 символов. За счет этого на один символ может приходиться "дробное" количество бит. Однако из соображений совместимости, список поддерживаемых битовых скоростей и на V.34 состоит из скоростей, кратных 2400, даже если символьная скорость выбрана не 2400, а большая. Например, известная Вам скорость 33600 бит/сек получается при передаче 79 бит на группу из 8 символов на символьной скорости 3429.

А теперь опять посмотрим на то, что нам предоставляет линия. С точки зрения увеличения числа состояний сигнала, она предоставляет нам параметр, именуемый динамическим диапазоном. То есть разницу между самым громким и самым тихим сигналом, который линия еще может пропустить без искажений. Сверху это обычно ограничивается перегрузочной способностью канала, а снизу - уровнем шумов канала. Иначе это еще называют соотношением сигнал/шум (SNR), то есть во сколько раз сигнал на приемной стороне громче шума, к нему примешиваемого. При этом помнят о том, что увеличение громкости сигнала сверх предела, допускаемого линией, невозможно.

И, наконец, еще раз про помехи. Все они сводятся к тому, что модем либо временно перестает различать сигнал, либо вовсе теряется точка привязки, то есть происходит так называемый срыв синхронизации, и модем уже не может без специальных процедур восстановления (retrain) нормально отделять ни символы друг от друга, ни понять, насколько фаза сигнала отличается от образцовой.

Теперь краткое резюме всего изложенного.

1.                 Параметры канала (линии), предоставляемого нам, характеризуются центром и шириной полосы пропускания (в норме - 300-3400 герц), уровнем шумов и искажений, и максимальным уровнем сигнала, еще пропускаемого без заметных искажений. Сигнал/шум - это характеристика того, как сигнал прошел через канал, и что получилось на приемном конце.

2.                 Параметры сигнала модема характеризуются центром и шириной спектра (частота несущей плюс и минус половина символьной скорости), и глубиной модуляции, то есть числом возможных градаций состояний сигнала.

3.                 Параметры канала ограничивают в принципе скорость передачи информации с одной стороны, а модем работает тем лучше и тем быстрее ее передает, чем полнее он занимает канал, и чем ближе параметры генерируемого им сигнала совпадают с возможностями, предоставляемыми каналом.

4.                 Кроме предыдущего пункта, важное значение имеют помехи: при прочих равных условиях, они вынуждают модем делать передаваемые символы более грубыми, и передавать их более длительное время, то есть снижать в результате скорость передачи информации.

5.                 Запомните на будущее две простые формулы: 1. Символьная скорость умноженная на глубину модуляции есть битовая скорость. 2. Ширина канала, потребная для передачи сигнала, равна символьной скорости, при этом центр полосы пропускания канала равен частоте несущей.

NIC - Network Interface card

Сеть Ethernet (созданана фирмой Xerox в 1976 году, имеет шинную топологию, использует CSMA для управления трафиком в главной линии связи). Стандарт организации локальных сетей (ЛВС), описанный в спецификациях IEEE и других организаций. IEEE 802.3. Ethernet использует полосу 10 Mbps и метод доступа к среде CSMA/CD. Наиболее популярной реализацией Ethernet является 10Base-T. Развитием технологии Ethernet является Fast Ethernet (100 Мбит/сек).

Характеристики сетевого адаптера

Сетевая карта или сетевой адаптер - это плата расширения, вставляемая в разъем материнской платы компьютера. Также существуют сетевые адаптеры стандарта PCMCIA для нотебуков (notebook). Или интегрированные на материнской плате компьютера - они подключаются по какой либо локальной шине. Появились Ethernet сетевые карты подключаемые к USB (Universal Serial Bus) порту компьютера.

Сетевые платы характеризуются своей

-          Разрядностью: 8 бит (самые старые), 16 бит и 32 бита. Следует ожидать появления 64 бит сетевых карт (если их уже не выпустили).

-          Шиной данных, по которой идет обмен информацией между материнской платой и сетевой картой: ISA, EISA, VL-Bus, PCI и др.

-          Микросхемой контроллера или чипом (Chip, chipset) , на котором данная плата изготовлена. И который определяет тип используемого совместимого драйвера и почти все остальное : разрядность, тип шины и т.д.

-          Поддерживаемой сетевой средой передачи (network media): установленными на карте разъемами для подключения к определенному сетевому кабелю. BNC для сетей 10Base-2, RJ45 для сетей 10Base-T и 100Base-TX, AUI для сетей 10Base-5 или разъемы для подключения к волоконной оптике.

-          Скоростью работы: Ethernet 10Mbit и/или Fast Ethernet 100Mbit, Gigabit Ethernet 1Gbit.

-          Также, карты на витую пару могут поддерживать или не поддерживать FullDuplex - ный режим работы.

-          MAC- адресом

Для определения точки назначения пакетов (frames) в сети Ethernet используется MAC-адрес. Это уникальный серийный номер присваиваемый каждому сетевому устройству Ethernet для идентификации его в сети. MAC-адрес присваивается адаптеру его производителем, но может быть изменен с помощью программы. Делать это не рекомендуется (только в случае обнаружения двух устройств в сети с одним MAC- адресом). При работе сетевые адаптеры просматривают весь проходящий сетевой трафик и ищут в каждом пакете свой MAC-адрес. Если таковой находится, то устройство (адаптер) декодирует этот пакет. Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting). MAC-адрес имеет длину 6 байт и обычно записывается в шестнадцетиричном виде, например 12:34:56:78:90:AB

Двоеточия могут и отсутствовать, но их наличие делает число более читаемым. Каждый производитель присваивает адреса из принадлежащего ему диапазона адресов. Первые три байта адреса определяют производителя.

 

Критерии выбора сетевого адаптераПри выборе сетевого адаптера следует принять во внимание следующие соображения.

·                    Тип шины данных, установленной в вашем компьютере (например, ISA, PCI). Старые компьютеры 286, 386 содержат только ISA, соответственно и карту вы можете установить только на шине ISA. 486 - ISA и VESA или ISA и PCI (хотя существуют платы поддерживающие все три ISA, VESA и PCI). Узнать это можно посмотрев в описании или посмотрев на саму материнскую плату, после того как откроете корпус компьютера. Вы можете установить сетевую карту в любой соответствующий свободный разъем. Pentium, Pentium Pro, Pentium-II, Pentium-III, Pentium-IV и более новые используют ISA, PCI, PCI-X и более новые шины данных, причем устаревшая шина ISA - для совместимости со старыми картами и уже пару лет как полностью удалена из компьютеров.

·                    Тип сети к которой вы будете подключаться. Если, например, вы будете подключаться к сети на коаксиальном кабеле (10Base-2, "тонкий" Ethernet), то вам нужна сетевая карта с соответствующим разъемом (BNC, устарел).

·                    Его стоимость, учитывая, что цена на самое передовое компьютерное оборудование падает очень быстро. А выйти из строя сетевая карта, при неблагоприятных обстоятельствах, может очень легко вне зависимости от того, сколько денег вы за нее заплатили.

·                    Еще надо учитывать поддержку вашего адаптера различными операционными системами. В случае совместимых, например, с NE2000 ISA адаптеров проблем, обычно, не возникает, вы просто указываете "NE2000 Compatible" не задумываясь какая фирма его произвела. Существует еще целый ряд адаптеров, поддержка которых обеспечена практически во всех операционных системах. Для того, чтобы проверить какие сетевые карты поддерживает ваша ОС надо посмотреть в "Compatibility List". Часто в таком списке указан чип, который поддерживается, т.е. если приобретаемый сетевой адаптер сделан на основе этой микросхемы, то все будет работать. От использования некоторых сетевых карт приходится отказываться, так как никто не хочет выпустить драйвер именно для этой карты, именно для этой операционной системы. Исходя из вышеизложенного лично я (никому ничего не советую) придерживаюсь следующих принципов при выборе адаптера.

·                    32-х разрядные сетевые адаптеры. Если имеется поддержка PCI BUS-Mastering (PCI-Bus-Master-Mode), то это позволяет уменьшить нагрузку на процессор.