_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Электронное устройство счета и сортировки

Электронное устройство счета и сортировки

Страница: 4/6

Функция дешифратора конца счёта имеет вид:

       (34.)     

Реализуем эту функцию на 9-ти входовом элементе КМОП – серии 9И-НЕ. Функциональная схема конца дешифратора счета примет вид:

Рисунок 10. Схема дешифратора конца счёта

4.4.     Разработка схемы установки счетчика в исходное (нулевое) состояние

Необходимо решить четыре задачи:

– формирование логического сигнала от дешифратора на число N;

– формирование кратковременного логического сигнала при включении прибора в сеть;

– формирование логического сигнала при нажатии кнопки “Сброс”;

– логическое объединение в один сигнал для управления счетчиком.

Счётчик обнуляется положительным перепадом напряжения, что бы наиболее просто обеспечить реализацию всех поставленных задач, выполним схему на элементе 3И-НЕ как показано на рисунке 11.

Рисунок 11. Схема сброса счётчика в исходное состояние

Время заряда конденсатора С6 до напряжения Uпит является временем автоматического сброса счетчика.

 – определяет время в течении которого будет заряжаться конденсатор С6.

R26 для элементов КМОП-серий выбирают до (100) кОм. Время “обнуления” τ не следует выбирать большим, так как это приведет к необходимости выбора конденсатора большой емкости. Время не должно превышать значения 0,001 с. Выберем τ = 1×10-4 (сек), и сопротивление резистора R26 = 510 (Ом).

Определим ёмкость конденсатора С6 по формуле 35:

.

Активным уровнем, определяющим процесс “обнуления” счётчика является высокий. Для ручного управления сбросом используем кнопку S2 подключённую к клемме “^“ источника питания. Сопротивление R27 для КМОП-серий выберем равным 4,7 кОм. Повышенные значения сопротивлений для КМОП-серий не рекомендуются из-за условия ухудшения коммутации кнопкой S2 малых токов.

Активным уровнем дешифратора конца счёта является низкий. С учетом принятых схемных решений таблица истинности объединяющего логического узла (ЛУ) имеет вид таблицы 8.

Таблица 8. Выход ЛУ

Х1

Х2

Х3

Y

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0

4.5.     Определение мощности и тока, потребляемых счетчиком.

Мощность потребляемая схемой двоично – десятичного счётчика (PСЧ) будет определяться суммой потребляемых мощностей схемы счёта (P1), дешифратора (P2)и схемой обнуления (P3).

       (35.)     

,

,

       (36.)     

Мощность резисторов R26 R27рассчитаем по формуле (38):

       (37.)      ,

,

Произведём подбор мощностей резисторов R26 и R27 по ГОСТ с учётом,

,

.

Мощность R26=0,5 Вт, R27=0,125 Вт.

Элемент DD3.3 (3И – НЕ) входит в состав микросхемы К561ЛА9 применённой в схеме ФЛУ и мощность этого элемента уже учтена. Из этого следует, что мощность потребляемая схемой обнуления будет определяться только мощностью потребляемой резисторами R26 и R27:

,

.

5.       Проектирование схемы индикации в десятичной форме.

5.1.     Выбор типа дешифраторов и семисегментных индикаторов.

В качестве индикаторных устройств наибольшее применение находят полупроводниковые и жидкокристаллические семисегментные индикаторы (рисунок12).

При пропускании прямого тока через светодиод полоска (сегмент) начинает излучать свет красного, зеленого или желто-зеленого цвета. Определенное сочетание светящихся сегментов индицирует цифру или букву и при применении специальных дешифраторов создается возможность вывода цифровой и буквенной информации, отражающей состояние управляющих и вычислительных устройств.

Рисунок 12. УГО семисегментного индикатора АЛС321А

Наиболее удобочитаемым, является индикатор АЛС321А с общим катодом. Высота знака у этого индикатора 7,5 мм, цвет свечения жёлто–зелёный.Ток потребления каждого сегмента равен 0,02 (А), напряжение питания одного сегмента 3,6 (В)

Специальные дешифраторы предназначены для преобразования двоичного кода в семисегментный код и управления полупроводниковыми семисегментными и жидкокристаллическими индикаторами. Рассмотрим дешифратор К176ИД2 (рисунок 13)

Рисунок 13. УГО дешифратора К176ИД2

Входы D0 – D3 информационные входы, a-g – выходы на семисегментный индикатор. При подаче на вход S высокого уровня – разрешение преобразования двоичного кода в семисегментный код, при подаче низкого уровня – “защёлка”. Высокий уровень на входе М определяет подключение семисегментного индикатора с общим анодом, низкий уровень – с общим катодом. При наличии “единицы” на входе К все сегменты индикатора гаснут, низкий уровень разрешает индикацию. Таблица истинности дешифратора представлена в таблице 9.

Таблица 9. Таблица истинности дешифратора К176ИД2



D3

D2

D1

D0

L

PI

A

B

C

D

E

F

G

Символ на индикаторе

0

0

0

0

1

0

1

1

1

1

1

1

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

1

1

0

1

1

0

1

2

0

0

1

1

1

0

1

1

1

1

0

0

1

3

0

1

0

0

1

0

0

1

1

0

0

1

1

4

0

1

0

1

1

0

1

0

1

1

0

1

1

5

0

1

1

0

1

0

1

0

1

1

1

1

1

6

0

1

1

1

1

0

1

1

1

0

0

0

0

7

1

0

0

0

1

0

1

1

1

1

1

1

1

8

1

0

0

1

1

0

1

1

1

1

0

1

1

9

1

0

1

0

1

0

0

0

0

1

1

1

0

L

1

0

1

1

1

0

0

1

1

0

1

1

1

H

1

1

0

0

1

0

1

1

0

0

1

1

1

P

1

1

0

1

1

0

1

1

1

0

1

1

1

R

1

1

1

0

1

0

0

0

0

0

0

123456