Студентам > Курсовые > Пушки Пирса со сходящимся пучком
Пушки Пирса со сходящимся пучкомСтраница: 4/5
Рис. 13. Распределение потенциала в ячейке системы электростатического формирования (а) и расчетная форма электродов (б).
равны U1, а потенциал среднего U0<U1, причем электроды прозрачны для электронов, например представляют собой сетки.
Очевидно, что распределение потенциала между электродами будет иметь вид, представленный на (рис. 12) с минимумом при z = 0.
Если теперь отбросить большую часть пучка, оставив только требуемых размеров аксиально-симметричный или ленточный пучок, то для его формирования необходимо подобрать форму электродов, создающих на границе пучка поле, удовлетворяющее тем же требованиям, что и поле в пушках Пирса. Это можно сделать в электролитической ванне тем же методом, что и при расчете пушек Пирса. Форма получающихся при этом электродов представлена на (рис. 13,б). Кромка низковольтного электрода подходит к границе пучка под углом 45°, что является характерным для систем данного типа. В такой системе можно получить пучок постоянного сечения. При этом ясно, что при увеличении длины системы будет возрастать и необходимая для ее работы разность потенциалов (U1—U0), что практически ограничивает протяженность пучка.
Для ее увеличения можно применить систему, составленную из ячеек, изображенных на (рис. 14). Наличие сеток в высоковольтных электродах ограничивает ток пучка из-за их перегрева, поэтому обычно сетки не применяются. Это приводит к расширению пучка при прохождении высоковольтных электродов аналогично тому, как это имеет место на аноде пушек Пирса.
Рис. 14. Электростатическая система формирования пучка по принципу Пирса. |
Строго говоря, рассматриваемая система при отсутствии сеток перестает быть системой типа Пирса и имеет отличное по сравнению с пушками Пирса распределение потенциала вдоль границы пучка. Появляются радиальные силы и как следствие этого — пульсации. Для уменьшения этих эффектов увеличивается диаметр диафрагм в электродах и корректируется их форма.
Современное применение пушек для создания интенсивных электронных пучков Плавка
Применение тугоплавких металлов приобретает все возрастающее значение в развитии науки и техники - атомной энергетике, авиационной и ракетной технике, химической промышленности и многих других. За последние десятилетия в технологии редких и тугоплавких металлов получили широкое распространение методы плавления в вакуумных электропечах разнообразной конструкции - индукционных, дуговых, электронно-лучевых. В институте Гиредмет разработан и нашел промышленное применение способ получения ниобия, тантала и других тугоплавких металлов восстановлением их пятиокисей алюминием, так называемый алюминотермический метод восстановления с последующей вакуумной плавкой. В 1998 - 1999 годах была создана электронно-лучевая установка для плавки ниобия и других тугоплавких металлов, полученных методом алюминотермического восстановления. Установка работает следующим образом: исходный материал - дробленые куски ниобий-алюминиевого сплава в количестве 55-65 кг, загружается в ванну медного водоохлаждаемого кристаллизатора и после электронно-лучевого переплава получается плоский слиток - полуфабрикат с размерами 20х200х2000 мм, пригодный для дальнейшей переработки. На установке применяется электронная двухкаскадная пушка аксиального типа. Танталовый катод разогревается электронной бомбардировкой от разогретой вольфрамовой спирали - первый каскад. Образующийся пучок электронов разгоняется в катод-анодном промежутке напряжением второго каскада и направляется на исходный материал, находящийся в кристаллизаторе.
Лучеводы электронной пушки снабжены фокусирующими магнитными линзами, системой управления электронного пучка. Камера пушки имеет поперечный вакуумный затвор, позволяющий отсекать ее объем от рабочего объема установки. Откачка объема пушки производится отдельной вакуумной системой. Высоковольтная часть пушки закрыта защитным кожухом с блокировкой. В конструкции установки предусмотрена блокировка по высокому напряжению в случае ухудшения вакуума в рабочем объеме. С помощью автоматической системы управления электронный пучок в процессе плавки сканирует в пределах ширины ванны кристаллизатора, а сам кристаллизатор перемещается в продольном направлении со скоростью 8 - 30 мм/мин с помощью электромеханического привода.
Сварка
Классификация технологических приемов сварки и ремонта швов электронным пучком. По степени изученности и применяемости известные технологические приемы сварки можно разделить на три группы. К первой относятся наиболее изученные и широко применяемые в промышленности приемы: развертка и наклон электронного пучка; модуляция тока электронного пучка; подача присадочного материала; применение подкладок; сварка смещенным и расщепленным электронным пучком; выполнение прихваток, предварительных и "косметических" проходов; сварка секциями. Вторая группа включает приемы, хорошо изученные в лабораторных условиях, но не получившие пока практического применения: "тандемная" сварка; сварка в узкий зазор; сварка "пробковыми" швами. В третью группу входят приемы, целесообразность или возможность реализации которых недостаточно обоснована: оплавление корневой части шва "проникающим" электронным пучком; осцилляция уровня фокусировки электронного пучка; применение флюсов; сварка с использованием широкой вставки; сварка с дополнительным теплоотводом; двухсторонняя сварка; вибрация свариваемого изделия; ввод ультразвуковых колебаний в сварочную ванну. По типам физического воздействия технологические приемы делят на четыре группы: управление пространственно-энергетическими параметрами электронного пучка (периодическое и статическое отклонение, модуляция токов электронного пучка и фокусирующей линзы); применение дополнительных конструктивных элементов и материалов (подкладки, вставки, накладки, наплавки, теплоотводящие элементы, присадки, флюсы); специальные сварные швы (дополнительные проходы, прерывистые швы, дополняющие швы); механическое воздействие на сварочную ванну (вибрация изделия, ввод ультразвуковых колебаний).
Список литературы:
- Л. Г. Шерстнев. «Электронная оптика и электронно-лучевые приборы» Учебник для студентов высших технических учебных заведений, - Москва, «Энергия», 1971г.
- А.А. Жигарев, Г.Г. Шамаева. «Электронно-лучевые и фотоэлектронные приборы» Учебник для вузов. – Москва : Высшая школа, 1982 г.
- Данные о новейших разработках взяты с сайта www.seo.ru
|