Студентам > Курсовые > Многопроцессорные системы
Многопроцессорные системыСтраница: 5/10
Конечно, требуемая модель обмена может быть надстроена над аппаратной моделью, которая использует любой из этих механизмов. Поддержка передачи сообщений над разделяемой памятью, естественно, намного проще, если предположить, что машины имеют адекватные полосы пропускания. Основные трудности возникают при работе с сообщениями, которые могут быть неправильно выровнены и сообщениями произвольной длины в системе памяти, которая обычно ориентирована на передачу выровненных
блоков данных, организованных как блоки кэш-памяти. Эти трудности можно преодолеть либо с небольшими потерями производительности программным способом, либо существенно без потерь при использовании небольшой аппаратной поддержки.
Построение механизмов реализации разделяемой памяти над механизмом передачи сообщений намного сложнее. Без предполагаемой поддержки со стороны аппаратуры все обращения к разделяемой памяти потребуют привлечения операционной системы как для обеспечения преобразования адресов и защиты памяти, так и для преобразования обращений к памяти в посылку и прием сообщений. Поскольку операции загрузки и записи обычно работают с небольшим объемом данных, то большие накладные расходы по поддержанию такого обмена делают невозможной чисто программную реализацию. При оценке любого механизма обмена критичными являются три характеристики производительности:
1 Полоса пропускания: в идеале полоса пропускания механизма обмена будет ограничена полосами пропускания процессора, памяти и системы межсоединений, а не какими-либо аспектами механизма обмена. Связанные с механизмом обмена накладные расходы (например, длина межпроцессорной связи) прямо воздействуют на полосу пропускания.
2 Задержка: в идеале задержка должна быть настолько мала, насколько это возможно. Для ее определения критичны накладные расходы аппаратуры и программного обеспечения, связанные с инициированием и завершением обмена.
3 Упрятывание задержки: насколько хорошо механизм скрывает задержку путем перекрытия обмена с вычислениями или с другими обменами.
Каждый из этих параметров производительности воздействует на характеристики обмена. В частности, задержка и полоса пропускания могут меняться в зависимости от размера элемента данных. В общем случае, механизм, который одинаково хорошо работает как с небольшими, так и с большими объемами данных будет более гибким и эффективным.
Таким образом, отличия разных машин с распределенной памятью определяются моделью памяти и механизмом обмена.
Исторически машины с распределенной памятью первоначально были построены с использованием механизма передачи сообщений, поскольку это было очевидно проще и многие разработчики и исследователи не верили, что единое адресное пространство можно построить и в машинах с распределенной памятью. С недавнего времени модели обмена с общей памятью действительно начали поддерживаться практически в каждой разработанной машине (характерным примером могут служить системы с симметричной мультипроцессорной обработкой). Хотя машины с централизованной общей памятью, построенные на базе общей шины все еще доминируют в терминах размера компьютерного рынка, долговременные технические тенденции направлены на использование преимуществ распределенной памяти даже в машинах умеренного размера. Как мы увидим, возможно наиболее важным вопросом, который встает при создании машин с распределенной памятью, является вопрос о кэшировании и когерентности кэш-памяти. 3 Классификация многопроцессорных систем с различной архитектурой
3.1 Многопроцессорные системы с общей памятью
Требования, предъявляемые современными процессорами к полосе пропускания памяти можно существенно сократить путем применения больших многоуровневых кэшей. Тогда, если эти требования снижаются, то несколько процессоров смогут разделять доступ к одной и той же памяти. Начиная с 1980 года эта идея, подкрепленная широким распространением микропроцессоров, стимулировала многих разработчиков на создание небольших мультипроцессоров, в которых несколько процессоров разделяют одну физическую память, соединенную с ними с помощью разделяемой шины. Из-за малого размера процессоров и заметного сокращения требуемой полосы пропускания шины, достигнутого за счет возможности реализации достаточно большой кэш-памяти, такие машины стали исключительно эффективными по стоимости. Во-первых разработках подобного рода машин удавалось разместить весь процессор и кэш на одной плате, которая затем вставлялась в заднюю панель, с помощью которой реализовывалась шинная архитектура. Современные конструкции позволяют разместить до четырех процессоров на одной плате. В такой машине кэши могут содержать как разделяемые, так и частные данные. Частные данные - это данные, которые используются одним процессором, в то время как разделяемые данные используются многими процессорами, по существу обеспечивая обмен между ними. Когда кэшируется элемент частных данных, их значение переносится в кэш для сокращения среднего времени доступа, а также требуемой полосы пропускания. Поскольку никакой другой процессор не использует эти данные, этот процесс идентичен процессу для однопроцессорной машины с кэш-памятью. Если кэшируются разделяемые данные, то разделяемое значение реплицируется и может содержаться в нескольких кэшах. Кроме сокращения задержки доступа и требуемой полосы пропускания такая репликация данных способствует также общему сокращению количества обменов. Однако кэширование разделяемых данных вызывает новую проблему: когерентность кэш-памяти.
Мультипроцессорная когерентность кэш-памяти. Проблема, о которой идет речь, возникает из-за того, что значение элемента данных в памяти, хранящееся в двух разных процессорах, доступно этим процессорам только через их индивидуальные кэши. Проблема когерентности памяти для мультипроцессоров и устройств ввода/вывода имеет много аспектов. Обычно в малых мультипроцессорах используется аппаратный механизм, называемый протоколом, позволяющий решить эту проблему. Такие протоколы называются Протоколами когерентности кэш-памяти. Существуют два класса таких протоколов:
1 Протоколы на основе справочника (directory based). Информация о состоянии блока физической памяти содержится только в одном месте, называемом справочником (физически справочник может быть распределен по узлам системы).
2 Протоколы наблюдения (snooping). Каждый кэш, который содержит копию данных некоторого блока физической памяти, имеет также соответствующую копию служебной информациио его состоянии. Централизованная система записей отсутствует. Обычно кэши расположены на общей (разделяемой) шине и контроллеры всех кэшей наблюдают за шиной (просматривают ее) для определения того, не содержат ли они копию соответствующего блока.
В мультипроцессорных системах, использующих микропроцессоры с кэш-памятью, подсоединенные к централизованной общей памяти, протоколы наблюдения приобрели популярность, поскольку для опроса состояния кэшей они могут использовать заранее существующее физическое соединение - шину памяти. Неформально, проблема когерентности памяти состоит в необходимости гарантировать, что любое считывание элемента данных возвращает последнее по времени записанное в него значение. Это определение не совсем корректно, поскольку невозможно требовать, чтобы операция считывания мгновенно видела значение, записанное в этот элемент данных некоторым другим процессором. Если, например, операция записи на одном процессоре предшествует операции чтения той же ячейки на другом процессоре в пределах очень короткого интервала времени, то невозможно гарантировать, что чтение вернет записанное значение данных, поскольку в этот момент времени записываемые данные могут даже не покинуть процессор. Вопрос о том, когда точно записываемое значение должно быть доступно процессору, выполняющему чтение, определяется выбранной моделью согласованного (непротиворечивого) состояния памяти и связан с реализацией синхронизации параллельных вычислений. Поэтому с целью упрощения предположим, что мы требуем только, чтобы записанное операцией записи значение было доступно операции чтения, возникшей немного позже записи и что операции записи данного процессора всегда видны в порядке их выполнения. С этим простым определением согласованного состояния памяти мы можем гарантировать когерентность путем обеспечения двух свойств:
|