_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > История развития проводной многоканальной электросвязи

История развития проводной многоканальной электросвязи

Страница: 1/9

Содержание

Введение 3

1 Зарождение техники многоканальной электросвязи. Простейшие методы разделения сигналов 5

2 Аналоговые системы передачи 8

3 Цифровые системы передачи плезиохронной цифровой иерархии . 14

4 Цифровые системы передачи синхронной цифровой иерархии 18

5 Мультиплексирование с разделением по длинам волн. Оптические транспортные сети . 21

Заключение . 27

Список использованных источников . 28

Введение

С изобретением в 1835 году электрического телеграфа в истории человечества началась новая эпоха – эпоха электросвязи. Менее чем за 200 лет телекоммуникационные технологии прошли огромный путь – от громоздких и неуклюжих устройств, которыми могли пользоваться лишь государственные организации и немногие наиболее обеспеченные частные лица, до глобальной инфраструктуры, обеспечивающей связь на всем земном шаре между самыми отдаленными его уголками. Огромная скорость, с которой распространяются электромагнитные волны, позволяет за ничтожные доли секунды преодолевать расстояния в десятки тысяч километров, передавая все виды информации: звук, неподвижные и подвижные изображения, компьютерные данные и т. д.

Изначально электрическая связь была проводной. Лишь в конце XIX века была открыта и использована возможность связи без проводов, посредством электромагнитных волн, распространяющихся в свободном пространстве. К настоящему времени беспроводные технологии получили исключительно широкое распространение. Однако, несмотря на использование самых современных средств и методов обработки сигналов, беспроводные средства связи проигрывают по пропускной способности кабельным линиям и вряд ли когда-нибудь их превзойдут. Это связано с тем, что электромагнитный сигнал, распространяющийся в закрытой направляющей системе (в кабеле), находится в гораздо более выгодных условиях, чем радиосигнал в открытом пространстве. На него практически не оказывают воздействия сигналы других линий, он не подвержен влиянию погодных условий, искажениям за счет многолучевого распространения и т. д.

Вместе с тем, оборудование кабельной линии связи – чрезвычайно трудоемкое и дорогостоящее мероприятие. Многие километры кабеля необходимо закопать в землю либо проложить по каналам кабельной канализации. Дополнительные трудности возникают при преодолении водных преград, автомобильных и железных дорог. Также следует учесть, что на протяжении большей части истории электросвязи использовались исключительно металлические кабели, для изготовления которых применялись такие дорогостоящие металлы, как медь и свинец.

Все эти проблемы уже на самых ранних этапах развития средств проводной связи привели к необходимости повышать эффективность использования линейно-кабельных сооружений за счет передачи одновременно нескольких сигналов по одной паре проводов. Разработка таких способов положила начало созданию аппаратуры уплотнения, или мультиплексирования. Технологии уплотнения в ходе своего развития прошли несколько этапов и к настоящему времени обеспечили создание мощной глобальной сети типовых каналов и трактов, то есть так называемой первичной, или транспортной, сети. Истории развития этих технологий и посвящена настоящая работа.

1 Зарождение техники многоканальной электросвязи. Простейшие методы разделения сигналов

Первые попытки повышения эффективности использования линий связи относятся к первой половине XIX века. Единственным существовавшим тогда видом электрической связи была телеграфия. В 1838 г. немецкий ученый Карл Штейнгель предложил для коротких линий в качестве второго провода цепи использовать землю или воду. Пять лет спустя Б. С. Якоби показал, что этот метод пригоден и для длинных линий. Это решение позволило вдвое повысить пропускную способность металлических проводников [1].

В 1860–1870 гг. применялись системы дуплексного, диплексного и квадруплексного телеграфирования. При дуплексном телеграфировании по одному проводу во встречных направлениях посылались две телеграммы. Разделение направлений приема и передачи осуществлялось при помощи развязывающих устройств (дифференциальных схем). Наиболее совершенная схема дуплексного телеграфирования была предложена американским инженером Дж. Стирнсом в 1871 г. При диплексном способе обе телеграммы посылались в одном направлении. В 1858–1859 гг. известный российский математик З. Я. Сло­ним­ский предложил схему квадруплексного телеграфирования – самый эффек­тив­ный, хотя и самым сложный из подобных методов. В этом случае по одному проводу передавались четыре телеграммы – по две во встречных направлениях. Практически эта схема была реализована лишь в 1874 г. Т. А. Эдисоном [1].

В 1876 г. французский изобретатель Ж. Бодо предложил способ многократного телеграфирования, позволявший работать по одной линии сразу нескольким телеграфным аппаратам. На передающей и приемной станциях устанавливались абсолютно одинаковые устройства – распределители, которые представляли собой круглые диски с укрепленными на них неподвижными контактами – ламелями. К каждой ламели подключался свой телеграфный аппарат. Кроме того, на диске имелся один подвижный контакт – щетка. Этот контакт был связан с телеграфным проводом и приводился в движение мотором. Вращаясь вокруг своей оси, щетка поочередно касалась каждой ламели и таким образом соединяла телеграфные аппараты с проводом [2].

В своей системе Бодо реализовал принцип временного разделения каналов, который лежит в основе практически всей современной цифровой связи.

В XIX веке предпринимались также попытки использовать явление механического резонанса для избирательного приема токов различных частот. В 1860 г. французский учитель физики Эдмонд Лаборд подобрал несколько пар гибких металлических пластинок и настроил передающую и приемную пластинки каждой пары в резонанс на собственную частоту.

Более совершенную схему предложил в 1869 г. профессор физики Харьковского университета Григорий Иванович Морозов. В его схеме предусматривались жидкостный передатчик и электромагнитный приемник. В сосуд с жидкостью опускались две металлические пластинки – подвижная и неподвижная. Ток от батареи подводился к подвижной пластинке. При ее колебаниях изменялись сопротивление слоя жидкости и, соответственно, сила тока, идущего в линию от неподвижной пластинки. Постоянный ток превращался в пульсирующий соответственно частоте колебаний пластинки. Приемник состоял из двух стержневых электромагнитов, над которыми располагался якорь в виде железной пластинки, настроенной в резонанс с подвижной пластинкой передатчика. Если по линии посылать одновременно сигналы от нескольких передатчиков, то каждый приемник реагирует на сигналы только своего передатчика и воспроизводит исходный сигнал. Ни схема Лаборда, ни схема Морозова так и не были реализованы [1].

Первые телефонные линии, также как и телеграфные, были воздушными и работали по однопроводной системе. По причине взаимных и внешних влияний пришлось отказаться от несимметричных однопроводных цепей и перейти на симметричные – двухпроводные цепи. Скрутка изолированных жил в пары начала применяться в 1882 г. Законодательно решение о переходе на двухпроводные телефонные цепи было принято на втором Международном электротехническом конгрессе, состоявшемся в Париже в 1889 г.