Студентам > Рефераты > Лазер на алюмо-иттриевом гранате (АИГ) с непрерывной накачкой
Лазер на алюмо-иттриевом гранате (АИГ) с непрерывной накачкойСтраница: 2/4
Рис.З. Схема усиления света в лазере (p1, р2 — коэффициенты отражения зеркал резонатора)
Началом генерации является спонтанное излучение ионов с метастабильного уровня, которое усиливается, проходя активную среду, и затем с помощью зеркал вновь в нее возвращается, снова усиливается и т. д. Если усиление света превосходит его суммарное ослабление за счет поглощения в среде и потерь на частичное пропускание выходного зеркала, то возникает генерация и лазер начинает излучать наружу свет. Очевидно, что мощность излучаемого света тем выше, чем выше мощность света накачки и чем меньше потери света внутри резонатора. Существует так называемая пороговая мощность накачки, при которой усиление света сравнивается с суммарными потерями, и при малейшем увеличении этой мощности может возникнуть генерация. Необходимо напомнить, что для того, чтобы усиление света всегда превосходило потери, нижний рабочий уровень 2 должен быстро опустошаться, т. е. его время жизни должно быть гораздо меньше, чем время жизни метастабильного уровня. В противном случае начнется накопление ионов неодима на уровне 2 и возрастет поглощение света с этого уровня наверх. Кроме того, время жизни ионов на уровнях накачки также должно быть малым. В противном случае ионы начнут накапливаться на уровнях накачки и инверсия населенности среды (а значит, и коэффициент усиления света) —начнет падать.
Как уже отмечалось, в лазерах на гранате с неодимом нижние рабочие уровни заселены слабо, и поэтому основная доля мощности накачки расходуется не на создание инверсной населенности (N3>N2), а на преодоление потерь в резонаторе и на полезное выходное излучение. При этом для возникновения генерации достаточно перевести на уровень 3 лишь малую часть ионов, находящихся на основном уровне. Это выгодно отличает этот вид лазеров от лазеров, работающих по трехуровневой схеме. В последних нижним рабочим уровнем является основной уровень, и для создания инверсной населенности (N3>N2) требуется перевести на метастабильный уровень 2 не менее половины ионов с основного уровня, а с учетом потерь в резонаторе и полезного излучения больше половины. Поэтому в трехуровневых лазерах (например, на рубине) мощность накачки расходуется непроизводительно и их КПД оказывается существенно ниже.
СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ЭЛЕМЕНТОВ АИГ-Nd
Спектрально-люминесцентные свойства элементов АИГ-Nd определяются свойствами самой матрицы, т. е. чистого, нелегированного кристалла АИГ, а также характеристиками ионов неодима, введенных в матрицу. Матрица оказывает заметное воздействие на спектральные свойства изолированного иона неодима: на положение, интенсивность и ширину спектральных линий, квантовый выход люминесценции и т. п. Обратное воздействие ионов на матрицу, как правило, невелико из-за относительно малой концентрации примесных ионов в матрице. Поэтому в целом можно сказать, что характеристики элементов АИГ-Nd определяются свойствами матрицы плюс претерпевшими определенные изменения свойствами ионов неодима.
Металл неодим является редкоземельным металлом и относится к группе лантаноидов. Оптические лазерные свойства ионов неодима определяются электронными переходами внутри подоболочки 4f четвертой электронной оболочки N атома неодима (рис. 4). Эта подоболочка в заметной степени экранирована от воздействия внешних электрических полей, в частности внутри-кристаллического поля, электронами внешних подоболочек 5s и 5p оболочек О и Р. Поэтому структура энергетических уровней электронов 4f подоболочки, а значит, и структура оптических лазерных переходов ионов неодима не очень зависят от типа матрицы. Воздействие матрицы проявляется в некотором (так называемом Штарковском) смещении и расщеплении исходных уровней изолированного иона за счет воздействия кристаллического поля матрицы и в уширении уровней за счет воздействия колебаний кристаллический решетки — фононов.
Рис 4. Структура электронных оболочек атома неодима: а — укрупненная структура оболочек; б — тонкая структура четвертой оболочки N (рядом с индексам оболочки указано количество электронов в ней) Рис. 5. Упрощенная схема энергетических уровней кристалла АИГ-Nd.
На рис. 5 представлена упрощенная схема энергетических уровней АИГ-Nd. Эти уровни обусловлены переходами трех 4f электронов внутренней оболочки иона Nd3+. Поскольку эти электроны экранируются восемью внешними электронами (5s2 и 5р6), на упомянутые энергетические уровни кристаллическое поле влияет лишь в незначительной степени. Поэтому спектральные линии, соответствующие рассматриваемым переходам, относительно узки. Уровни энергии обозначаются в соответствии с приближением LS-связи атомной физики, а символ, характеризующий каждый уровень, имеет вид 2s+lLj, где S — суммарное спиновое квантовое число, j — суммарное квантовое число углового момента, a L — орбитальное квантовое число. Заметим, что разрешенные значения L, а именно L = = О, 1, 2, 3, 4, 5, 6, . обозначаются прописными буквами соответственно S, P, D, F, G, Н, I Таким образом, основное состояние 4I9/2 иона Nd3+ соответствует состоянию, при котором 2S + 1 = 4 (т. е. S = 3/2), L = 6 и J = L — S = 9/2. Две основные полосы накачки расположены на длинах волн 0,73 и 0,8 мкм соответственно, хотя другие более высоко лежащие полосы поглощения также играют важную роль. Эти полосы связаны быстрой (~ 10-7 с) безызлучательной релаксацией с уровнем 4F3/2, откуда идет релаксация на нижние уровни (а именно 4I9/2, 4I11/2 и 4I13/2), этот последний уровень не показан на рис.5. Однако скорость релаксации намного меньше (τ≈0,23 мс), поскольку переход запрещен в приближении электродипольного взаимодействия (правило отбора для электродипольно разрешенных переходов имеет вид ΔJ=0 или ±1) и поскольку безызлучательиая релаксация идет медленно вследствие большого энергетического зазора между уровнем 4F3/2 и ближайшим к нему нижним уровнем. Это означает, что уровень 4F3/2 запасет большую долю энергии накачки и поэтому хорошо подходит на роль верхнего лазерного уровня. Оказывается, что из различных возможных переходов с уровня 4F3/2 на нижележащие уровни наиболее интенсивным является переход 4F3/2 → I11/2 Кроме того, уровень 4I11/2 связан быстрой (порядка наносекунд) безызлучательной релаксацией в основное состояние 4I9/2, а разница между энергиями уровней 4I9/2, и 4I11/2 почти на порядок величины больше, чем kT. Отсюда следует, что тепловое равновесие между этими двумя уровнями устанавливается очень быстро и согласно статистике Больцмана уровень 4I11/2 в хорошем приближении можно считать практически пустым. Таким образом, этот уровень может быть прекрасным кандидатом на роль нижнего лазерного уровня.
Из сказанного выше ясно, что в кристалле АИГ-Nd переход 4F3/2 → 4I11/2 хорошо подходит для получения лазерной генерации в четырехуровневой схеме. В действительности необходимо принимать во внимание следующее: Уровень 4F3/2 расщеплен электрическим полем внутри кристалла (эффект Штарка) на два сильно связанных подуровня (R1 и R2), разделенных энергетическим зазором ΔЕ ≈ 88 см-1. Уровень 4I11/2 также расщеплен вследствие эффекта Штарка на шесть подуровней. Оказывается, что лазерная генерация обычно происходит с подуровня R1 уровня 4F3/2 на определенный подуровень уровня 4I11/2, поскольку этот переход обладает наибольшим значением сечения перехода (σ = 8,8∙10-19 см2). Этот переход имеет длину волны λ=1,064мкм (ближний ИК диапазон). Однако, поскольку подуровни R1 и R2 сильно связаны, при всех вычислениях используют эффективное сечение σ21 = z21σ = 3,5∙10-19 см2, где z21= ехр(-ΔE/kT) / [ 1 + ехр (-ΔE/kT)] =0,4 — функция распределения для подуровня R2. Следует также заметить, что, используя в резонаторе лазера подходящую дисперсионную систему, генерацию можно получить на многих других длинах волн, соответствующих различным переходам: 4F3/2 → 4I11/2 (λ = 1,05—1,1 мкм), 4F3/2 → 4I13/2 (λ=1,319 мкм—наиболее интенсивная линия в этом случае) и переходу 4F3/2 → 4I9/2 (λ около 0,95 мкм). Кроме того, стоит вспомнить, что лазерный переход с λ = 1,06 мкм при комнатной температуре однородно уширен вследствие взаимодействия с фононами решетки. Соответствующая ширина Δv = 6,5 см-1 = 195 ГГц при температуре Т = 300 К- Это делает АИГ-Nd очень подходящим для генерации в режиме синхронизации мод. Большое время жизни верхнего лазерного уровня (т = 0,23 мс) позволяет АИГ-Nd быть весьма хорошим для работы в режиме модулированной добротности.
|