Студентам > Рефераты > Электровакуумные приборы магнетронного типа
Электровакуумные приборы магнетронного типаСтраница: 3/6
Рассмотрим подробнее некоторые из СВЧ – приборов “М типа”.
2 Усилитель бегущей волны типа М
2.1 Отличие от ЛБВ типа О
В ЛБВ типа М, в отличие от ЛБВО, существуют две существенные особенности:
1) наиболее благоприятное взаимодействие электронов с бегущей волной и передача энергии от электронов к полю происходят при точном равенстве средней скорости электронов и фазовой скорости волны (). Напротив, для передачи энергии от электронов к полю в ЛБВ типа О требуется, чтобы электроны двигались чуть быстрее.
2) в ЛБВ-О электроны отдают полю только избыточную кинетическую энергию, соответствующую разности скоростей электронов и волны. КПД ограничен допустимой разностью этих скоростей. Энергия, передаваемая полю, берется от источника ускоряющего напряжения U0. В ЛБВМ же кинетическая энергия электронов не меняется, а полю передается потенциальная энергия электронов.
2.2 Принципиальная схема ЛБВ типа М, общее описание
Устройство усилительной лампы бегущей волны (ЛБВ) типа М показано на рис. 3
Рис. 3 ЛБВ типа М
Электронный поток, эмиттируемый катодом, под действием поля управляющего электрода и внешнего магнитного поля, движется по циклоидальной траектории и затем вводится в пространство взаимодействия, образованное замедляющей системой и основанием. В дальнейшем траектория пучка близка к прямолинейной. Высокочастотный сигнал поступает через согласованный вход СВЧ и распространяется вдоль замедляющей системы. Если скорость дрейфа электронов подобрана равной фазовой скорости волны в системе, то пучок отдает потенциальную энергию волне, и последняя увеличивает свою амплитуду. Через согласованный выход СВЧ, мощность поступает в нагрузку. В процессе взаимодействия электроны отдают свою энергию ВЧ полю и поднимаются к аноду (замедляющая система). Та часть электронов, которая не попала на замедляющую систему, выводиться на коллектор. Для предотвращения самовозбуждения усилителя, вход и выход замедляющей системы развязаны локальным поглотителем.
Схема распределения напряжений такова. Катод находится под нулевым потенциалом, основание имеет отрицательный или нулевой потенциал, управляющий электрод и замедляющая система находятся под различными положительными потенциалами, относительно катода. Коллектор имеет положительный потенциал.
2.3 Усиление ЛБВ типа М
В линейной теории, при пренебрежении пространственным зарядом, в условиях холодного синхронизма () , показано [1], что поле вдоль оси лампы меняется следующим образом:
(10)
Поле представляет собой сумму двух парциальных горячих волн (одна с растущей амплитудой, другая с падающей амплитудой), распространяющихся в прямом направлении вдоль оси z.
Где - фазовая постоянная, - параметр усиления, - ток, - половина напряжения на замедляющей системе, - циклотронная частота, - волновое сопротивление замедляющей системы, - скорость невозмущенных электронов, - фазовая скорость волны в “холодной” системе. Учитывая, что и вводя электрическую длину лампы , получим:
(11)
Или в децибелах
(12)
В [1] показано, что при больших длинах лампы, коэффициент усиления можно записать так:
(13)
В общем случае, при наличии рассинхронизма , коэффициент усиления представим в виде
(14)
где А – начальные потери на образование нарастающей (горячей) волны. В режиме холодного синхронизма, входной сигнал расщепляется на два одинаковых парциальных сигнала и усиливается фактически лишь половина входного сигнала. - фактор усиления.
Рассмотренное в [1] линейное приближение применимо для малых уровней входного сигнала. Но в приборах со скрещенными полями усиление малых сигналов затруднительно, из-за высокого уровня собственных шумов, вследствие паразитных колебаний в области формирования электронного луча, а также взаимодействия электронов с отраженной волной. В большинстве приборов отношение мощности полезного сигнала к мощности шумов не превышает 40 дБ. Поэтому необходим нелинейный анализ таких устройств.
Приведем основные результаты нелинейной теории ЛБВ типа М, полученные в [2] для параметра рассинхронизма b=0.
Вычисление выходной мощности и кпд производится на основе известных выражений:
(15)
Где - амплитуда СВЧ напряжения на конце замедляющей системы.
(16)
Где - вспомогательная амплитудная функция, а - нормализованная длина. На конце замедляющей системы , на входе. Тогда из (15) и (16) нетрудно получить:
(17)
Уровень входного сигнала в децибелах, относительно величины , равен:
(18)
На рис. 6 приведены кривые при изменении q от 0 до 10 для значений D=0.1, b=0, K=-30, , отношение удвоенной толщины пучка, к расстоянию между замедляющей системой и основанием 0.1, - параметр расталкивания для электронного пучка бесконечного сечения равный 0 при отсутствии влияния объемного заряда, и 0.5 при значительном его влиянии, - плотность потокапучка электронов.
|