Студентам > Рефераты > Основные типы диэлектриков, применяемых в производстве конденсаторов
Основные типы диэлектриков, применяемых в производстве конденсаторовСтраница: 3/7
Полистирольные конденсаторы . Несколько дней
Бумажные конденсаторы Несколько часов
Тацталовые объемно-пористые электролитические конденсаторы ….1 или 2 ч
Конденсаторы из керамики с высокой диэлектрической проницаемостью………………………………………………………… .Несколько минут
Алюминиевые электролитические конденсаторы с нетравлеными анодами……………………………………………………… .Несколько секунд
Необходимо иметь в виду, что при емкостях меньше 0,1 мкф постоянная времени определяется в большей степени особенностями конструкции и внешнего оформления самого конденсатора, чем качеством диэлектрика. Ток утечки увеличивается с повышением температуры (примерно экспоненциально). Для хороших диэлектриков при комнатной температуре он весьма мал, и практически его трудно измерить, но при более высоких температурах ток утечки может стать заметным даже в конденсаторах с хорошим диэлектриком.
Сопротивление диэлектриков по постоянному току
Сопротивление диэлектрика постоянному току может быть охарактеризовано поверхностным удельным сопротивлением в омах или мегомах или удельным объемным сопротивлением в ом · см. Следует отметить, что сопротивление изоляции конденсаторов с хорошими диэлектриками (стекло, слюда и т. п.) может заметно уменьшиться при использовании для их конструктивного оформления материалов с пониженным удельным сопротивлением, таких, как фенольные смолы, особенно в условиях воздействия высокой влажности или температуры.
Электрическая прочность
Электрическая прочность материала определяется величиной напряженности поля, при которой происходит пробой. Напряженность поля в киловольтах на 1 мм (или вольтах на 1 мк), при которой пробивается диэлектрик, зависит от толщины материала, температуры, частоты и формы волны испытательного напряжения, метода проведения испытания и пр. Поэтому сравнивать различные материалы в идеале следует на образцах равной толщины и в идентичных условиях измерения.
Для определения электрической прочности к образцу, в котором сделаны углубления для того, чтобы получить возможно более однородное распределение поля, через электроды, армированные охранными кольцами, подводится постепенно повышающееся напряжение. Подготовка образцов играет весьма важную роль.
В качестве практического предела электрической прочности материала удобно принять напряжение начала разрядов, выше которого с течением времени начинает развиваться пробой. Это напряжение обычно много ниже предельной электрической прочности при кратковременном приложении напряжения. При напряжении выше начального разрядного возникает корона и начинается прогрессирующее разрушение материала. Испытание методом определения начального напряжения разрядов имеет то преимущество, что является «неразрушающим» испытанием, поскольку корона вызывает высокочастотные колебания, которые можно наблюдать и измерять, не доводя образец до пробоя. Электрическая прочность материала всегда уменьшается, если он работает в условиях высокой температуры или повышенной влажности. Немногие материалы полностью однородны, и обычно пробой связан с прохождением тока утечки вдоль определенного малого участка материала; этот участок нагревается, что приводит к быстрому разрушению или к искрению вдоль поверхности и, следовательно, к обугливанию органического материала. Неорганические материалы, такие, как стекло, керамика и слюда, обычно устойчивы против этой формы пробоя. Очень важно время приложения напряжения. Большинство диэлектриков при кратковременных воздействиях выдерживает значительно более высокие напряжения, чем при длительной работе. С увеличением частоты электрическая прочность падает, особенно при радиочастотах, в зависимости от коэффициента мощности материала и т. п.
Влияние частоты на диэлектрики и готовые конденсаторы
В области очень низких и очень высоких частот наблюдается увеличение потерь, которое практически ограничивает использование конденсатора с любым диэлектриком. При очень низких частотах в диэлектрике становятся заметными различные формы утечки, такие, как ток утечки на постоянном токе и долговременные поляризационные явления, которых не бывает на высоких частотах. При очень высоких частотах некоторые процессы, связанные с поляризацией диэлектрика, не успевают полностью проявиться и поэтому вызывают потери.
Типы конденсаторов постоянной емкости
Важнейшие характеристики конденсатора определяются его диэлектриком. Поэтому обычно конденсаторы классифицируются по виду диэлектрика: бумага, слюда, керамика и т. д.
Бумажные пропитанные конденсаторы
Бумажные пропитанные конденсаторы являются изделиями широкого общего применения. Они изготовляются намоткой из двух или более слоев бумаги (диэлектрика), расположенных между двумя лентами металлической фольги, и затем пропитываются. Эти конденсаторы имеют следующие характеристики (при сравнении со слюдяными конденсаторами):
1) цена относительно невелика;
2) коэффициент мощности относительно высок (до 0,01 при 25° С и 1КГц, от 0,005 до 0,04 при —55° С, в зависимости от пропитки);
3) удельная емкость высока;
4) рабочее напряжение постоянного тока среднее;
5) отклонение емкости от номинала (начальное) большое: возможно ±5%, обычно ±10% или больше.
Максимальное допускаемое рабочее напряжение бумажного пропитанного конденсатора зависит от температуры окружающей среды. Срок жизни конденсатора приблизительно обратно пропорционален пятой степени рабочего напряжения при температурах до 85° С. В спецификации приведены кривые снижения рабочего напряжения при повышении температуры для каждого варианта конструкции конденсаторов. Величина требуемого снижения напряжения изменяется в зависимости от буквенного обозначения конденсатора, которое указывает на тип пропитки, и от энергии, запасаемой конденсатором при полной зарядке. Для конденсаторов с большим запасом энергии оговариваются другие кривые снижения напряжения в зависимости от температуры.
Изучение надежности работы показало, что для конденсаторов в типичных условиях применения наблюдается пропорциональность между количеством выходов из строя и отношением приложенного напряжения к номинальному. Например, в одном из таких опытов за 5000 ч работы выход конденсаторов из строя составил 0,26% для рабочего напряжения, равного 25% Uном и 1,6% для 100% номинального напряжения.
Для работы при переменном напряжении бумажные пропитанные конденсаторы должны быть специально отобраны или разработаны, так как размеры корпуса (площадь его поверхности), пропитка и другие конструктивные данные влияют на выбор номинального напряжения. Допускаемая переменная составляющая для бумажного конденсатора постоянного напряжения зависит от типа пропиточной массы и от конструкции. Поэтому конденсаторы, поставляемые разными поставщиками, чрезвычайно разнообразны. Постоянная времени бумажных пропитанных конденсаторов комнатной температуре (25° С) составляет от 1500 до 20 000 Мом *мкФ (в зависимости от сорта бумаги и пропиточной массы), но быстро падает при повышении температуры окружающей среды. Для маленьких цилиндрических герметизированных конденсаторов постоянная времени может уменьшиться от 20 000 Мом * мкФ при 25° С до 20 Мом *мкФ при 125° С. Это снижение обратно пропорционально величине емкости при ее значениях выше 1 мкФ. Изменение емкости с температурой в основном связано с типом пропиточной массы, причем наибольших изменений можно ожидать при низких температурах. Коэффициент мощности при 25° С и 1 КГц изменяется от 0,003 до 0,01, увеличиваясь с частотой. При напряжении 5 В и меньше или в условиях высокочастотной вибрации ударов применяется конструкция конденсаторов с выступающей фольгой, так как конструкция с вкладными контактами требует приложения достаточно кого напряжения, чтобы переходное сопротивление тактах было малым. Бумажные опрессованные пластмассой конденсаторы хуже герметизированных типов в металлических корпусах. В условиях повышенной влажности сопротивление изоляции опрессованных конденсаторов много ниже и в процессе старения заметно ухудшается. В тех случаях, когда требуется малая емкость на землю удобно применять конденсаторы в герметизированных керамических корпусах. Хотя конденсаторы этой конструкции после 1000 ч испытаний на срок службы имеют лучшую стабильность емкости, повышенное сопротивление изоляции и меньшее изменение угла потерь, чем аналогичные конденсаторы в металлических корпусах, применять их следует с осторожностью, так как у этой конструкции при термических ударах иногда нарушается герметичность. Испытание образцов бумажных конденсаторов на хранение в течение 2 лет показало, что при температуре 50 ± 2° С и относительной влажности 90—95% происходит прогрессирующее снижение сопротивления изоляции, ухудшается угол потерь и электрическая прочность конденсаторов и снижается их напряжение перекрытия. При такой же или более низкой температуре в сочетании с пониженной относительной влажностью характеристики также ухудшаются, но медленнее. Во всех вариантах климатических условий испытанные конденсаторы с аксиальными выводами показали наименьшее изменение характеристик.
|