_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Разработка анализатора спектра речи

Разработка анализатора спектра речи

Страница: 4/9

Обо всех этих аспектах спектрального анализа и пойдет речь в данной главе. Прежде всего мы рассмотрим дискретное преобразование Фурье (ДПФ) - разновидность преобразования Фурье, специально предназначенную для работы с дискретными сигналами. Далее обсудим идеи, лежащие в основе алгоритмов быстрого преобразования Фурье, позволяющих значительно ускорить вычисления.

Дискретное преобразование Фурье, по возможности вычисляемое быстрыми мето­дами, лежит в основе различных технологий спектрального анализа, предназначенных для исследования случайных процессов. Дело в том, что если анализи­руемый сигнал представляет собой случайный процесс, то простое вычисление его ДПФ обычно не представляет большого интереса, так как в результате полу­чается лишь спектр единственной реализации процесса. Поэтому для спектраль­ного анализа случайных сигналов необходимо использовать усреднение спектра. Такие методы, в которых используется только информация, извлеченная из са­мого входного сигнала, называются непараметрическими (попрагате1пс). Другой класс методов предполагает наличие некоторой статистической модели случайного сигнала. Процесс спектрального анализа в данном случае включая себя определение параметров этой модели, и потому такие методы называются параметрическими. Используется также термин «модельный спек­тральный анализ*.

Рис, 2.2. формантный рисунок вокализованных звуков: А2-А3 — амплитуды формант; F1-Гз — частоты формант; ∆F1 — ширина первой форманты

В„. дБ

Рис. 2.3. Формантный рисунок невокализованных звуков; А1 - А5 - амплитуды формант; F1-F5 — частоты формант.

Дискретное преобразование Фурье

В разделе «Спектр дискретного сигнала» главы 3 мы проанализировали явле­ния, происходящие со спектром при дискретизации сигнала. Рассмотрим теперь, что представляет собой спектр дискретного периодического сигнала. Итак, пусть последовательность отсчетов {x(k)} является периодической с перио­дом N:

x(k+ N) = x(k) для любого k.

Такая последовательность полностью описывается конечным набором чисел, в ка­честве которого можно взять произвольный фрагмент длиной N. например {х(к),

k - 0, 1……. N - 1}. Поставленный в соответствие этой последовательности сигнал

из смещенных по времени дельта-функции:

(1)

также, разумеется, будет периодическим с минимальным периодом ЛТ. Так как сигнал (5.1) является дискретным, его спектр должен быть периоди­ческим с периодом 2л/7'. Так как этот сигнал является также и периодическим, его спектр должен быть дискретным с расстоянием между гармониками, рав­ным 2л/(МГ).

Итак, периодический дискретный сигнал имеет периодический дискретный спектр, который также описывается конечным набором из N чисел (один период спектра содержит 2πT/2πNT = N гармоник).

Рассмотрим процедуру вычисления спектра периодического дискретного сигна­ла. Так как сигнал периодический, будем раскладывать его в ряд Фурье. Коэф­фициенты f(л) этого ряда, согласно общей формуле (1.9), равны

(2)

Это приводит к частичному или даже полному заглушению пере­даваемого звука, называемому маскировкой.

Можно сказать, что маскировка эквивалентна повышению порога слышимости. Количественно ее можно определить как разность:

М = β-βо,

где β - порог слышимости при воздействии помех; β0 - порог слы­шимости в тишине.

Разборчивость речи и ее мера

В последние годы широкое развитие получили цифровые сети ин­тегрального обслуживания, в которых все виды информации, в том чи­сле речь, передаются в цифровом виде. При реализации цифровых преобразований речевых сигналов возникают специфические искаже­ния, влияющие на качество речи. Одним из критериев качества речи является ее разборчивость.

Разборчивость — это объективная количественная величина, харак­теризующая способность тракта телефонной связи передать содержа­щуюся в речи смысловую информацию в данных конкретных условиях акустической среды. Эта величина является объективной в том смы­сле, что зависит от физических параметров тракта телефонной свя­зи, а также от среды, в которой ведется телефонный разговор, и не зависит от субъективных свойств конкретных, измеряющих разборчи­вость операторов.

Современная измерительная аппаратура давно срослась с цифровыми и процессорными средствами управления и обработки информации. Стрелочные указатели уже становятся нонсенсом даже в дешевых бытовых приборах. Аналитическое оборудование все чаще подключается к обычным ПК через специальные платы-адаптеры. Таким образом, используются интерфейсы и возможности программ приложений, которые можно модернизировать и наращивать без замены основных измерительных блоков, плюс вычислительная мощь настольного компьютера.

Кроме того, и расширение возможностей обычного компьютера возможно за счет разнообразных программно-аппаратных средств, — специальных плат расширения, содержащих измерительные АЦП (аналого-цифровой преобразователь) и ЦАП (цифро-аналоговый преобразователь). И компьютер очень легко превращается в аналитический прибор, к примеру, — спектроанализатор, осциллограф, частотомер… , как и во многое другое. Подобные средства для модернизации компьютеров выпускаются многими фирмами. Однако цена и узконаправленная специфика не делают это оборудование распространенным в наших условиях.

Но зачем далеко ходить? Оказывается, простой ПК в своей конструкции уже содержит средства, которые с некоторыми ограничениями способны превратить его в тот же осциллограф, спектроанализатор, частотомер или генератор импульсов. Согласитесь, уже немало. К тому же делаются все эти превращения только с помощью специальных программ, которые к тому же совершенно бесплатны и каждый желающий может их скачать в Интернете.

Можно задаться логичным вопросом — как же в измерениях можно обойтись без АЦП и ЦАП? Никак нельзя. Но ведь и то и другое присутствует почти в каждом компьютере, правда, называется по-другому — звуковая карта. А чем не АЦП/ЦАП, скажите, пожалуйста? Это уже давно поняли те, кто написал для нее массу программ, не имеющих никакого отношения к воспроизведению музыки. Ведь обычная звуковая плата ПК способна воспринимать и преобразовывать сигнал сложной формы в пределах звуковой частоты и амплитудой до 2В в цифровую форму со входа LINE-IN или же с микрофона. Возможно и обратное преобразование, — на выход LINE-OUT (Speakers). Таким образом, вы можете работать с любым сигналом до 20 кГц, а то и выше, в зависимости от звуковой платы. Максимальный предел уровня входного напряжения 0,5-2 В тоже не составляет проблемы, — примитивный делитель напряжения на резисторах собирается и калибруется за 15 минут. Вот на таких-то нехитрых принципах и строятся программное обеспечение: осциллографы, осциллоскопы, спектроанализаторы, частотомеры и, наконец, генераторы импульсов всевозможной формы. Такие программы эмулируют на экране компьютера работу привычных для нас приборов, естественно со своей спецификой и в пределах частотного диапазона вашей звуковой платы.