Студентам > Рефераты > Гибридные интегральные микросхемы
Гибридные интегральные микросхемыСтраница: 3/5
Нанесение пленок через съемные маски осуществляют термическим испарением в вакууме либо ионно-плазменным распылением.
В результате коробления маски в процессе напыления пленки между маской и подложкой образуется зазор, приводящий к подпылу. Кроме того, размеры окон в маске при многократном напылении уменьшаются. Все это обуславливает меньшую точность данного метода по сравнению с фотолитографическим.
Несмотря на недостатки масочный метод является самым простым, технологичным и высокопроизводительным.
Метод фотолитографии. Этот метод позволяет получить конфигурацию элементов любой сложности и имеет большую точность по сравнению с масочным, однако он более сложен.
Существует несколько разновидностей фотолитографии. Метод прямой фотолитографии предусматривает нанесение сплошной пленки материала тонкопленочного элемента, формирования на ее поверхности фоторезистивной контактной маски, вытравливание через окна в фоторезисте лишних участков пленки. Контактная маска из фоторезиста или другого материала, более стойкого к последующим технологическим воздействиям, воспроизводит рисунок фотошаблона из пленки.
Экспонированный фоторезист удаляется (растворяется) после чего пленка резистивного материала стравливается с участков, не защищенных фоторезистом. Далее на подложке в вакууме наносится сплошная пленка алюминия. После фотолитографии и травления алюминия проводящая пленка остается в областях контактных площадок и проводников. При этом сформированные на предыдущем этапе резисторы не повреждаются. После нанесения поверх проводящих элементов и резисторов защитного слоя стекла проводится еще одна, третья фотолитографическая обработка, в результате которой стекло удаляется из областей над контактными площадками, а также по периметру платы.
Метод обратной (взрывной) фотолитографии отличается от предыдущего тем, что сначала на подложке формируется контактная маска, затем наносится материал пленочного элемента, после чего производится удаление контактной маски.
При фотолитографическом методе для изготовления ГИС, содержащих резисторы и проводники, используют два технологических маршрута. Первый вариант – напыление материала резистивной и проводящей пленок; фотолитография проводящего слоя; фотолитография резистивного слоя; нанесение защитного слоя. Второй вариант – после проведения первых двух операций, тех же что и в предыдущем варианте, сначала осуществляют фотолитографию и травление одновременно проводящего и резистивного слоев, затем вторую фотолитографию для стравливания проводящего слоя в местах формирования резистивных элементов, после чего следует нанесение защитного слоя и фотолитография для вскрытия окон в нем над контактными площадками.
При производстве пленочных микросхем, содержащих проводники и резисторы из двух различных (высокоомного и низкоомного) резистивных материалов, рекомендуется такая последовательность операций: поочередное напыление пленок сначала высокоомного, затем низкоомного резистивных материалов; напыление материала проводящей пленки; фотолитография проводящего слоя; фотолитография низкоомного резистивного слоя; фотолитография высокоомного резистивного слоя; нанесение защитного слоя.
Комбинированный метод. При совмещении масочного и фотолитографического методов для микросхем, содержащих резисторы, проводники и конденсаторы, используют два варианта:
1) напыление резисторов через маску, напыление проводящей пленки на резистивную; фотолитография проводящего слоя; поочередное напыление через маску нижних обкладок, диэлектрика и верхних обкладок конденсатора; нанесение защитного слоя;
2) напыление резистивной пленки и проводящей пленки на резистивную; фотолитография проводящего и резистивного слоев; фотолитография проводящего слоя; напыление через маску нижних обкладок, диэлектрика и верхних обкладок конденсатора; нанесение защитного слоя.
Для схем, не содержащих конденсаторов, применяют один из трех вариантов:
1) напыление через маску резисторов и проводящей пленки; фотолитография проводящего слоя; нанесение защитного слоя;
2) напыление резистивной пленки; фотолитография резистивного слоя; напыление через маску проводников и контактных площадок; нанесение защитного слоя;
3) напыление резистивной пленки, а также контактных площадок и проводников через маску; фотолитография резистивного слоя; нанесение защитного слоя.
2.2. Технологические маршруты производства
толстопленочных ГИС
После очистки и отжига платы на нее наносят и вжигают с обеих сторон проводниковую пасту для формирования проводников, контактных площадок и нижних обкладок конденсаторов, после чего формируют диэлектрик для конденсаторов и пересечений проводников. Верхние обкладки и пленочные перемычки изготавливают из одной пасты. Последними формируют резисторы, имеющие самую низкую температуру вжигания. После обслуживания контактных площадок производят лазерную подгонку резисторов. Заключительные сборочные операции: установка выводов, монтаж навесных компонентов и герметизация опрессовкой с использованием пластмассы, после чего производят обрезание рамки и разъединение выводов.
2.3. Нанесение тонких пленок в вакууме
Наиболее распространенными методами получения тонких пленок различных материалов в вакууме являются методы термического испарения и ионного распыления.
К процессам термического испарения относится испарение: а) из резистивных испарителей, включая взрывное испарение с применением вибропитателей; б) из тиглей с радиационным и высокочастотным индукционным нагревом; в) с помощью электронно-лучевых испарителей (за счет сфокусированного луча). К процессам ионного распыления относится: а) катодное (диодная система); б) ионно-плазменное (триодная система); в) с помощью сфокусированных ионных пучков; г) магнетронное.
Достоинствами метода термического испарения материалов и их конденсации в вакууме являются: реализация высоких скоростей осаждения материалов в высоком вакууме, простота, отработанность технологических операций и наличие современного высокопроизводительного оборудования.
Основными достоинствами методов ионного распыления материалов являются: возможность распыления практически всех материалов современной микроэлектроники, в том числе различных соединений (нитридов, оксидов и т.д.) при введении в газоразрядную плазму реакционно-способных газов (реактивное распыление); высокая адгозия получаемых пленок к подложкам; однородность пленок по толщине; очистка поверхности подложек с помощью ионной бомбардировки как перед, так и в процессе осаждения пленки.
Метод термовакуумного напыления. Метод основан на создании направленного потока пара вещества и последующей конденсации его на поверхности подложек, имеющих температуру ниже температуры источника пара. Пленка при конденсации формируется из отдельных атомов или молекул пара вещества. Процесс термовакуумного напыления состоит из четырех этапов: 1) образование пара вещества; 2) перемещение частиц пара от источника к подложкам; 3) конденсация пара на подложках; 4) образование зародышей и рост пленки.
|