_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Проектирование АЛУ для сложения двоично-десятичных чисел

Проектирование АЛУ для сложения двоично-десятичных чисел

Страница: 1/3

Содержание

Введение 2

1 Постановка задачи 3

1.1Общие сведения о работе сумматора. Принцип построения сумматоров 3

1.2 Запись десятичных чисел 6

1.3Суммирование двоично-десятичных чисел 7

2 Построение АЛУ 8

2.1 Построение функциональной и структурной схем АЛУ 8

2.2 Описание работы принципиальной схемы 8

3 Описание элементной базы АЛУ 11

Список литературы 12

Введение

В настоящее время – время компьютерных технологий, в нашу жизнь всё больше и больше входят и успешно применяются всевозможные «умные вещи», например автоматические стиральные машины, СВЧ печи, DVD проигрыватели тому подобные предметы. Все они предназначены для того, чтобы, как можно больше облегчить наши повседневные хлопоты и одновременно уменьшить время, затрачиваемое на рутинные бытовые заботы. Однако не все знают, что работа этих устройств не просто какое-то волшебство, а свет инженерной мысли их создателей. Также, не все знают, что команды, выполняемые этими приборами, подразумевают работу с двоичными числами, которые представляются в виде кодов выполняемых операций. Например, мы нажимаем кнопку изменения уровня громкости на пульте управления телевизора, и видим на экране шкалу, которая увеличивается (уменьшается) в зависимости от выбранной кнопки, одновременно вы слышим изменение звучания. Эти изменения вызваны тем, что определённая комбинация представленная в двоичном коде передаётся на управляющие органы телевизора, тем самым выполняет необходимое нам действие.

1 Постановка задачи

1.1Общие сведения о работе сумматора. Принцип построения сумматоров

Сумматор осуществляет арифметическое суммирование n-разрядных кодов X=(x(n-1), ,x0) и Y=(y(n-1), ,y0). Правила сложения двух одноразрядных двоичных чисел:

0 (+) 0 = 0

0 (+) 1 = 1 (+) 0 = 1

1 (+) 1 = 0 и перенос 1 в старший разряд.

Операция (+) называется - сумма по модулю два. Устройство реализующее эти правила называется одноразрядным полусумматором и имеет два входа и два выхода. Сложение трех одноразрядных чисел производится следующим образом:

0 (+) 0 (+) 0 = 0

0 (+) 0 (+) 1 = 1

0 (+) 1 (+) 1 = 0 и перенос 1 в старший разряд

1 (+) 1 (+) 1 = 1 и перенос 1 в старший разряд.

Устройство реализующее эти правила называется одноразрядным полным сумматором (ОПС) и имеет три входа и два выхода. Таблица истинности ОПС приведена на рис.1, слева.

ris26.gif (4407 bytes)

Рисунок 1

xi,yi - одноименные двоичные разряды чисел X и Y, ci - перенос из предыдущего разряда, si - частичная сумма по модулю два и c(i+1) - перенос в следующий разряд. Значения c(i+1) совпадают со значениями функции мажоритарности, поэтому воспользуемся готовым решением:

c(i+1) = xi*yi + xi*ci + yi*ci. (1)

Таблица Карно для si приведена на рис.1 справа. Из таблицы находим: si = xi*~yi*~ci + ~xi*~yi*ci + xi*yi*ci+ ~xi*yi*~ci = ~yi(xi*~ci + ~xi*ci) + yi(xi*ci + ~xi*~ci) = ~yi(xi (+) ci) + yi(xi*ci + ~xi*~ci). Выражение в последней скобке необходимо преобразовать, используя соотношение двойственности.

xi*ci + ~xi*~ci = ~(xi*ci) * ~(~xi*~ci) = (~xi+~ci) *(xi+ci)= ~xi*xi + ~xi*ci + ~ci*xi + ~ci*ci = ~xi*ci + xi*~ci = ~(xi (+) ci) = ~F6 = F9,

где F6=x1 (+) x0 - исключающее ИЛИ,

F9= ~(x1 (+) x0) исключающее - ИЛИ-НЕ

С учетом последнего выражения

si = ~yi(xi (+) ci) + yi~(xi (+) ci) =

yi (+) (xi (+) ci) = yi (+) xi (+) ci. (2)

Схема полного одноразрядного сумматора соответствующая уравнениям (1) и (2) и её условное обозначение приведены на рисунке 2.

Рисунок 2

Сумматор с последовательным переносом для сложения n- разрядных двоичных чисел показан на схеме (рис.3.). К его недостатку относится большое время задержки, в наихудшем случае, когда от сложения x0,y0 возникает сквозной перенос через все разряды до выхода s(n-1). При двухъярусной схеме одноразрядного сумматора, задержка сигнала от входов до выходов составит 2tзд.р., если считать задержку в каждом ярусе одинаковой. Суммарная величина задержки будет равна:

tзд.р.посл.сумматора = n*2tзд.р. (3)

При сложении многоразрядных чисел задержка выходного сигнала на выходе последнего разряда становится недопустимо большой.

Рисунок 3

В ЭВМ сумматор является центральным узлом арифметико-логического устройства (АЛУ) и от его быстродействия зависит производительность компьютера. Поэтому применяются сумматоры с параллельной схемой переноса. Выражение (1) для младшего разряда можно преобразовать, используя тождество для функции ИЛИ: x + y = ~x*y + x*~y + xy. В правой части равенства совершенной дизъюнктивной нормальной формой (СДНФ) выражения (4) функции ИЛИ. Тогда

(4)

c1 = x0*y0 + x0*c0 + y0*c0 = x0*y0 + c0(x0 + y0) =

x0*y0 + c0(~x0*y0 + x0*~y0 + x0*y0) =

x0*y0(с0 +1) + c0(~x0*y0 + x0*~y0) =

x0*y0 + с0(x0 (+) y0). (5)

Уравнениям (2) и (5) соответствует схема на рис.4

Рисунок 4

Если в каждом разряде сумматора использовать такой одноразрядный сумматор, то никакого выигрыша в скорости не будет. Узел, обведенный точками, называется узлом переноса (УП), а функции gi и pi называются функциями генерации переноса и распространения переноса. С учетом этого можно записать:

c1 = g0 + p0*c0, с2 = g1 + p1*c1 = (6)

= g1 + p1*g0 + p1*p0*c0, (7)

с3 = g2 + p2*c2 = (8)

= g2 + p2*g1 + p2*p1*g0 + p2*p1*p0*c0, (9)

, и так далее. Выражения (6, 8) - это еще последовательный сумматор, т.к. c3 зависит от c2, c2 зависит от c1, а c1 зависит от c0. Выражения (7, 9) соответствуют уже параллельному, т.к. величина ci снимается с выхода предыдущего разряда, в котором она формируется параллельно из всех первичных переменных. Схемы узлов переноса УП1 и УП2 приведены на рис.5.

Рисунок 5

Из рис.4 и 5 видно, что узел сложения в каждом разряде остается неизменным, а изменяется только узел переноса, причем задержка сигнала от входов xi, yi до c(i+1) остается неизменной и для 3-ярусной схемы равна 3tзд.р Суммарная задержка в каждом разряде увеличится на время прохождения сигнала от входа ci до si, т.е. на величину tзд.р., и составит: tзд.р.паралл.сумматора = 4tзд.р. независимо от количества разрядов. За это приходится платить усложнением узла переноса от разряда к разряду.

1.2 Запись десятичных чисел