Студентам > Рефераты > Оптические системы светоизлучающих диодов
Оптические системы светоизлучающих диодовСтраница: 2/5
Для диодов с углом излучения 5—15° по половинному уровню от максимального значения силы света наиболее целесообразно использовать величину S/R = 1,9 — 2,0 [1] (рис. 1 Приложения). Конкретные значения S/R обычно подбирают с учетом действия отражателя света и рассеивающего эффекта, возникающего при введении в компаунд диспергирующего наполнителя.
В качестве материала для полимерной герметизации светоизлучающих диодов в большинстве случаев используется эпоксидный компаунд на основе прозрачной смолы.Компаунд отличается весьма высоким светопропусканием. Хранение образцов компаунда при температуре +70-80°C практически не приводит к ухудшению светопропускания. Снижение светопропускания начинает наблюдаться при длительном хранении при температуре +100°C и выше, причем наибольшее поглощение света наблюдается в коротковолновой части видимого спектра. Введение красителя (например, красного) вызывает резкое увеличение поглощения коротковолнового света, но практически не влияет на поглощение света длинноволновой части видимого диапазона. Введение красителей способствует повышению контрастности свечения за счет поглощения рассеянного света окружающего пространства.
Для изготовления сигнальных СИД, как правило, применяется компаунд, диспергированный светорассеивающим наполнителем. Наполнитель позволяет увеличить размер светящегося пятна и расширить диаграмму направленности излучения (увеличить угол излучения). Одновременно он резко понижает интенсивность отраженного диодом внешнего света и, тем самым, снижает эффект отсвечивания для невключенных диодов.
Вывод света из полупроводника
Из светоизлучающего кристалла может быть выведена только часть генерируемого р — n - переходом излучения в связи со следующими основными видами потерь:
1) потери на внутреннее отражение излучения, падающего на границу раздела полупроводник — воздух под углом, большим критического;
2) поверхностные потери на френелевское отражение излучения, падающего на границу раздела под углом, меньшим критического;
3) потери, связанные с поглощением излучения в приконтактных областях;
4) потери на поглощение излучения в толще полупроводника.
Наиболее значительны потери на полное внутреннее отражение излучения. В связи с большим различием показателей преломления полупроводника nп и воздуха nв доля выходящего излучения определяется значением критического угла Qпр между направлением светового луча и нормалью к поверхности:
Qпр=arcsin n-1,
где n=nn/nв.
Для полупроводников GaAs и GaP значения показателя преломления составляют соответственно 3,54 и 3,3, а значения критического угла Qпр равны примерно 16 и 17,7°.
Излучение, падающее на поверхность раздела полупроводник — воздух под углом, меньшим критического, выводится из кристалла, а под углом, большим критического, испытывает полное внутреннее отражение. Если коэффициент поглощения света веществом кристалла велик, то все отраженное световыводящей поверхностью излучение поглотится внутри кристалла. Если же полупроводник прозрачен для генерируемого излучения, то свет, отраженный верхней, нижней, а также боковыми гранями кристалла, может повторно (и не один раз) падать на светоизлучающую поверхность частично выводиться из кристалла в соответствии с долей света, подходящей к световыводящей поверхности под углом, меньшим критического.
Долю светового излучения, которая может быть вы ведена через верхнюю поверхность кристалла плоской конфигурации при первом падении световой волны, определяют по формуле F= sin2 (Qпр/2) Тср,
где Тср — средний коэффициент пропускания света поверхностью кристалла для лучей, падающихна границу раздела под углом, меньшим критического. Коэффициент пропускания света, падающего нормально к поверхности, определяется по формуле Френеля Т=(n - 1)2/(1 + n)2.
Так как вблизи критического угла пропускание уменьшается, то можно ожидать средний коэффициент пропускания соответственно Тcр»0,67 и 0,695 [1].
Значение величины F для таких полупроводников, как GaAs и GaP, находится в пределах 1,3—1,65% [1]. Малое значение величины F для кристаллов плоской конфигурации послужило причиной поиска различных путей повышения внешней оптической эффективности светоизлучающих диодов. Существует несколько таких путей, кратко их рассмотрим [1]:
1. Применение такой геометрии кристалла, чтобы большая часть излучаемого p—n-переходом света падала на границу раздела под углом, меньшим критического. В качестве примеров такой геометрии могут служить полусферический кристалл, усеченная сфера (сфера Вейерштрасса) и другие. В этих конструкциях кристалла размер р—n-перехода существенно меньше диаметра полусферы, что и позволяет получать малое отклонение падающего на поверхность луча от нормали к поверхности. Если провести расчет, при некоторых допущенных (не учитывать поглощение света в толще материала, отраженное поверхностью полупроводника излучение считать полностью поглощенным), то он покажет, что использование кристаллов полусферической геометрии позволяет увеличить вывод излучения из кристалла в воздух до 34 % всего генерируемого излучения. Полусферическую конфигурацию кристалла эффективно применять в тех случаях, когда поглощение света в толще полупроводника мало. Такие условия возникают при использовании структур GaAs : Si, GaP : Zn, 0; GaP : N и др.
2. Помещение кристалла в среду с показателем преломления nв<n<nn для увеличения критического угла. Если в качестве среды использовать прозрачный эпоксидный компаунд с показателем преломления nк=1,5—1,6, то критический угол Qпр возрастает до 25—30°. В этом случае выход излучения из кристалла в окружающую среду (в данном случае в компаунд) возрастет в 2,5—3 раза. Если прибор предназначен для вывода излучения в воздух, то для сохранения коэффициента вывода излучения конфигурация полимерного покрытия должна быть такой, чтобы свет падал на поверхность раздела компаунд — воздух под углом, меньшим критического для этой границы. Еще более положительный эффект может дать применение прозрачного купола из стекла с показателем преломления n=2—3.
3. Нанесение антиотражающих покрытий на поверхность кристалла для снижения потерь на отражение света, падающего на световыводящую поверхность под углом, меньшим критического (аналогично просветлению оптики). Таким путём удается увеличить выход излучения на 20—30 %.
4. Применение специальной конфигурации плоского кристалла для обеспечения "внутренней фокусировки" излучения и увеличения доли генерируемого света, падающего на световыводящую поверхность под углом, меньшим критического.
5. Создание омических контактов, занимающих незначительную часть площади грани кристалла, с целью уменьшения поглощения света в кристалле.
6. Создание диффузно-рассеивающей излучающей поверхности с целью повышения внешнего квантового выхода излучения.
Если угловое распределение фотонов, выходящихизактивной области, имеет сферическую симметрию, то создание днффузно-рассеивающей поверхности улучшает условия вывода излучения для косых лучей. Сферическая симметрия генерируемого излучения внутри кристалла возникает в диодах с низким самопоглощением излучения в активной области. В результате создания диффузно-рассеивающей поверхности диодов с низким самопоглощением излучения экспериментально получено увеличение внешнего квантового выхода излучения на 25—40 %.
|