_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Совмещенные двухчастотные ФАР

Совмещенные двухчастотные ФАР

Страница: 3/4

(4.10)

Как следует из (4.9), изменив расстояние h между апертурами ВЧ и НЧ ФАР, можно для определенного направления максимума ДН добиться минимального снижения КУ ВЧ ФАР из-за совмещения. При этом величину h выбирают из условия . Зависимость на рис. 4.6, которая приведена для примера, построена для случая, когда в качестве ВЧ ФАР была выбрана решетка волноводных излучателей с треугольной сеткой расположения излучателей размером 0,605l1х0,5l1 апертуры полноводного излучателя. Излучатели были размещены вплотную друг к другу, причем толщина их стенок полагалась равной нулю.

При сканировании в широком секторе углов максимальное снижение КУ ВЧ ФАР почти не зависит от h/l1. Максимальный уровень дополнительных боковых лепестков в ВЧ диапазоне можно уменьшить за счет более равномерного распределения в пространстве переизлучаемой излучателями НЧ диапазона мощности ВЧ диапазона. Это реализуемо в конформных (выпуклых) и неэквидистантных НЧ ФАР. Так, для слабо эквидистантой НЧ ФАР, излучатели которой смещены вдоль координаты X по случайному гауссовскому закону с дисперсией относительно своих средних координат , образующих регулярную сетку с периодом dx0 при условии равноамплитудного возбуждения НЧ-излучателей падающим ВЧ полем средний уровень уменьшения m-го дополнительного бокового лепестка по сравнению с оценкой (4.10)

(4.11)

где М — число излучателей в НЧ ФАР.

Как видно из рис. 4.7, даже для относительно небольшого числа излучателей М=10 можно существенно подавить дополнительные боковые лепестки. Отметим, что зависимости от больших значений s/dx0 (см. рис. 4.7) характеризуют потенциально допустимый уровень подавления в НЧ ФАР с большим числом излучателей. При относительно небольшом числе их средний уровень подавления может существенно отличаться от уровня подавления в конкретной реализации и для достижения его надо подбирать конкретную реализацию неэквидистантной НЧ ФАР.

Для плоской слабо неэквидистантной ФАР с излучателями, смещенными случайным образом относительно регулярной прямоугольной сетки их расположения с шагами dx0 и dy0 по осям ОХ и ОY, уровень подавления mn-го дополнительного бокового лепестка

(4.12)

где - дисперсии смещения излучателей по осям ОХ и ОY; М, N — числа излучателей по осям ОХ и ОY.

Характеристики НЧ ФАР при совмещении меняются незначительно. Нижняя ВЧ ФАР служит для НЧ ФАР своеобразным дополнительным экраном. Если ВЧ ФАР образована из плотно расположенных открытых концов прямоугольных волноводов, широкая стенка которых размером d1 параллельна оси ОY, ее влияние эквивалентно наличию идеального отражателя с фазой коэффициента отражения . Поэтому в присутствии волноводной ВЧ ФАР ДН одиночного НЧ вибратора

(4.13)

где через F0(q) обозначена ДН НЧ вибратора в отсутствие ВЧ ФАР.

Если излучателем ВЧ ФАР служат вибраторы, то ВЧ ФАР вместе с реальным металлическим экраном - эквивалентный экран. Это приводит к изменению оптимального расстояния h2 от реального экрана до плоскости НЧ ФАР. Зависимость оптимального относительного расстояния h2/l2 от отношения частот совмещаемых ФАР при q0=0 представлена на рис. 4.8. Расчеты показывают, что при оптимально выбранном расстоянии h2 для q0=0 влияние ВЧ ФАР не приводит к заметному изменению КУ при сканировании лучом НЧ ФАР по сравнению с расположением ее над идеальным металлическим экраном. Таким образом, при совмещении в НЧ диапазоне характеристики практически не меняются, если правильно выбрано расстояние между апертурами НЧ и ВЧ ФАР. Дополнительные боковые лепестки из-за совмещения в НЧ диапазоне не возникают.

Перейдем к более точному методу расчета характеристик совмещенных ФАР. Этот метод можно использовать при периодичности структуры совмещенной ФАР, достаточно больших размерах ее апертуры и при относительно небольшом отношении частот совмещаемых ФАР f1/f2»1.5 3. Условие периодичности структуры позволяет выделить минимальную ячейку, включающую несколько ВЧ излучателей и, как правило, один НЧ излучатель. Диаграмму направленности такой ячейки в каждом частотном диапазоне находят в предположении, что ячейка расположена в бесконечной ФАР с равноамплитудным и линейным фазовым возбуждениями от ячейки к ячейке, формирующими основной лепесток множителя направленности по q0, j0. Амплитудно-фазовые распределения в пределах одной ячейки могут быть достаточно произвольными, но обычно их выбирают следующим образом: амплитудное возбуждение рабочих для данного диапазона частот излучателей равномерное, а фазовое берут из условия, чтобы максимум ДН ячейки совпадал с максимумом ДН множителя направленности решетки. При этом для реальной ФАР, образованной конечной совокупностью ячеек, ДН ФАР представляется в виде произведения ДН ячейки на множитель направленности периодической структуры:

(4.14)

где

(4.14)

Дискретная функция, описывающая закон амплитудно-фазового возбуждения от ячейки к ячейке,

(4.15)

где xmn, ymn - декартовы координаты геометрического центра mn-й ячейки.

Для больших периодических совмещенных ФАР коэффициент усиления

(4.16)

где N— общее число ячеек; — коэффициент использования поверхности (КИП) ФАР, зависящий от закона амплитудного возбуждения |Imn| различных ячеек; - КУ ячейки в составе бесконечной периодической ФАР; - нормированный КУ ячейки; , s=sЯN - площади апертур ячейки и ФАР.

При определении дискретный закон амплитудного возбуждения |Imn| можно аппроксимировать гладкой кривой. При этом с хорошей точностью совпадает с КИП непрерывной апертуры с аппроксимирующим законом амплитудного возбуждения. Для ячейки совмещенной ФАР конкре