Студентам > Курсовые > Электрическое активное сопротивление
Электрическое активное сопротивлениеСтраница: 2/3
Мосты Уитстона и Томсона в простом и удобном для пользования исполнении обеспечивают точность измерения порядка 1%; точность лабораторных мостов прецизионного исполнения достигает 10E-6 и выше. Измерительные мосты упомянутого типа могут быть выполнены с автоматическим уравновешиванием, т. е. в виде так называемых автоматических мостов, в которых ток IG в гальванометре вызывает срабатывание реверсивного двигателя, изменяющего отношение R1/R2 до тех пор, пока оно не станет равным нулю. Такой мост может быть выполнен в виде стрелочного и цифрового измерительного прибора, непосредственно определяющего Rx.
Для приближенного измерения сопротивлений с точностью в несколько процентов применяют омметры с прямым отсчетом. Они осуществляют измерение на основе упомянутой выше зависимости между током и напряжением и прямо показывают при помощи логометра (значение) R=U/I. Согласно другому способу при известном напряжении измеряют ток, причем шкалу градуируют непосредственно в омах. Омметры этого типа встраивают в универсальные (многопредельные) приборы для измерения тока и напряжения.
Омметры.
Электронные омметры (подгруппа Е6) широко используются для измерения активных сопротивлений в диапазоне 10Е-4 - 10Е12 Ом при измерении сопротивлений резисторов, изоляции, контактов, поверхностных и объемных сопротивлений и в других случаях.
В основе большинства электронных омметров лежат достаточно простые схемы, которые приведены на рис. 2.
Если в схемах, представленных на рис. 2, использовать магнито-
Рис. 2, Последовательная (а) и параллельная (б) схемы омметров
электрический измерительный механизм, то при соблюдении условия U = Const показания будут определяться значением измеряемого сопротивления Rx. Следовательно, шкала может быть отградуирована в единицах сопротивления.
Для последовательной схемы включения Rx (рис. 2, а)
α= SU /R+Rx; (6)
а для параллельной схемы включения Rx (рис. 2, б)
a= SU*Rx/(RRx+RД(R+Rx); (7)
где S= Bsw/W - чувствительность магнитоэлектрического измерительного механизма.
Так как все значения величин в правой части уравнений (6) и (7), кроме Rx, постоянны, то угол отклонения определяется значением Rx. Такой прибор называется омметром. Из выражений (6) и (7) следует, что шкалы омметров при обеих схемах включения неравномерны. В последовательной схеме включения в отличие от параллельной, нуль шкалы совмещен с максимальным углом поворота подвижной части. Омметры с последовательной схемой соединения более пригодны для измерения больших сопротивлений, а с параллельной схемой — малых. Обычно омметры выполняют в виде переносных приборов классов точности 1,5 и 2,5. В качестве источника питания применяют сухую батарею.
С течением времени напряжение батареи падает, т. е. условие U = const не выполняется. Вместо этого, трудно выполнимого на практике условия, поддерживается постоянным значение произведения ВU = const, а следовательно, и SU == const. Для этого в магнитную систему прибора встраивается магнитный шунт в виде ферромагнитной пластинки переменного сечения, шунтирующей рабочий воздушный зазор. Пластинку можно перемещать с помощью ручки, выведенной на переднюю панель. При перемещении шунта меняется магнитная индукция В.
Для регулировки омметра с последовательной схемой включения перед измерением замыкают накоротко его зажимы с надписью «Rx», и в том случае, если стрелка не устанавливается на отметке «О», перемещают ее до этой отметки с помощью — шунта. Регулировка омметра с параллельной схемой включения производится при отключенном резисторе Rx. Вращением рукоятки шунта указатель устанавливают на отмётку шкалы соответствующую значению Rx= ∞ .
Необходимость установки нуля является крупным недостатком рассмотренных омметров. Этого недостатка нет у омметров с магнитоэлектрическим логометром.
Схема включения логометра в омметре представлена на рис. 3. В этой схеме 1 и 2— рамки логометра, обладающие сопротивлениями R1 и R2; Rн и RД — добавочные резисторы, постоянно включенные в схему. Так как
I1=U/(R1+Rн); I2=U/(R2+RД+Rx), (8)
Тогда
a= F((R2+RД+Rx)/(R1+Rн), (9)
т. е. угол отклонения определяется значением Rx и не зависит от напряжения U.
Рис. 3. Схема включения логометра в омметре.
Конструктивно омметры с логометром выполняют весьма разно образно в зависимости от требуемого предела измерения, назначения (щитовой или переносный прибор) и т. п.
Точность омметров при линейной шкале характеризуется приведенной погрешностью по отношению к пределу измерения. При нелинейной (гиперболической) шкале погрешности прибора характеризуются. также приведенной погрешностью, %, но по отношению к длине шкалы, выраженной в миллиметрах, т. е; γ=(∆l/lшк)100.
В СССР выпускается несколько типов электронных омметров. Омметры типов Е6-12, Е6-15 имеют структурные схемы, близкие к схемам, приведенным на рис. 2б. Пределы измерения 0,001—0,003 . 100 Ом, приведенная погрешность 1,5—2,5%. Омметры типов E6-1Q, Е6-13 имеют структурную схему, приведенную на рис. 2а. Пределы измерения 100—300—1000 Ом; 3—10 .1000 кОм; 1—3 .107 МОм; γ= 1.5; 2.5%.
Измерение сопротивлений способом вольтметра и амперметра.
Pис. 4 а и б. Эти способы могут быть применены для измерения различных по значению сопротивлений. Достоинство этих схем заключается в том, что по резистору с измеряемым сопротивлением можно пропускать такой же ток, как и в условиях его работы, что очень важно при измерениях сопротивлений, значения которых зависят от тока.
Рис. 4. Измерение сопротивлений вольтметром -и амперметром . |
Измерение сопротивления амперметром и вольтметром основано на использовании закона Ома. Однако если собрать схемы, показанные на рис. 4, и установить в цепи измеряемого сопротивления требуемый условиями его работы ток, то, отсчитав одновременно показания вольтметра V и амперметра А, а затем разделив первое на второе, получим лишь приближенное значение измеряемого сопротивления
R’x= U/I. (10)
Действительное значение сопротивления Rx определится следующими выражениями:
для схемы рис. 4, а
Rx=U/Ix=U/(I-Iv)=U/(I-U/Rv); (11)_
для схемы рис. 4, б
Rx= (U-IxRa)/Ix. (12)
Как видно из выражений (11) и (12), при подсчете искомого сопротивления по приближенной формуле (10) возникает погрешность. При измерении по схеме рис. 4, а погрешность получается за счет того, что амперметр учитывает не только ток Ix проходящий через резистор с изменяемым сопротивлением Rx но и ток Iv,ответвляющийся в вольтметр.
При измерении по схеме рис. 4,б погрешность появляется из-за того, что вольтметр кроме напряжения на резисторе с измеряемым сопротивлением учитывает также значение падения напряжения на амперметре.
|