_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Печатные излучатели

Печатные излучатели

Страница: 1/4

КОНСТРУКЦИЯ И ПРИНЦИПЫ ДЕЙСТВИЯ

Печатный излучатель представляет собой прямоугольную пластинку, возбуждаемую одним или несколькими штырями (рис. 7.1). Несмотря на простоту конструкции, это многофункциональный элемент, он может создавать поле излучения как с линейной, так и с круговой поляризацией, а также работать на одной или двух частотах с взаимно ортогональным расположением плоскостей поляризации излучаемых волн. Теория печатных излучателей может быть построена на базе различных физических моделей. Одна из таких моделей базируется на представлении печатного излучателя в виде разомкнутого отрезка несимметричной полосковой линии, возбуждаемого штырем через отверстие в экране.

При приближенном подходе, основанном на теории длинных линий, в отрезке учитывается возбуждение лишь квази-T-волны. В качестве продольной оси отрезка полосковой линии выбирается одна из осей симметрии прямоугольной пластинки. Предполагается, что энергия излучается через торцевые щели, образованные кромками отрезка полоскового проводника и экраном, а излучение из боковых щелей пренебрежимо мало. По сравнению с мощностью квази-T-волны, набегающей на щель, мощность, излучаемая торцевыми щелями, невелика, поэтому коэффициент отражения в плоскости торцевых щелей близок к единице. Распределение тока, а также поля вдоль оси полосковой линии между торцевыми щелями и возбуждающим штырем мало отличается от соответствующих распределений в несимметричной полосковой линии со стоячей квази-T-волной. На торцевые щели приходятся максимум напряженности электрического поля и нуль электрического тока. При определенной длине отрезка полосковой линии происходит синфазное сложение волн, отраженных от его концов, и волн, возбуждаемых штырем, что соответствует резонансному режиму работы. Интенсивность колебаний поля и тока, а также мощность излучения в резонансном режиме резко возрастают.

Пусть направление оси отрезка полосковой линии совпадает с осью y (см. рис. 7.1). Тогда резонанс квази-T-волны, распространяющейся в этом направлении, определяется размером b пластинки. Размер а определяет входное сопротивление при резонансе. Торцевые щели 1, 3 излучают волны с основной

поляризацией, а боковые щели 2, 4 — волны с кроссполяризацией поля. Резонансный размер пластинки практически кратен половине длины квази-T-волны:

(7.1)

где - длина квази-T-волны.

Распределение напряженности электрического поля вдоль торцевых и боковых щелей в резонансном режиме (рис. 7.2, б) соответствует низшей резонансной частоте, когда длина отрезка полосковой линии близка к половине длины квази-T-волны. Энергия, запасенная в поле квази-T-волны при резонансе, достаточно велика. Следствием этого являются высокая добротность и узкополосность рассматриваемых излучателей. Если резонансный размер излучателя кратен нечетному числу полуволн квази-T-волны

(7.2)

то колебания поля в торцевых щелях противофазны. Направление эквивалентного магнитного тока в торцевых и боковых щелях

(7.3)

где n - единичный вектор нормали к плоскости щелей, при m=0 показано на рис. 7.2, в. sitednl.narod.ru/1.zip - база сотовых по Петербургу

Согласно (7.3) эквивалентные магнитные токи торцевых щелей при выполнении условия (7.2) синфазны. Излучение синфазных щелей имеет максимум в направлении нормали к плоскости экрана. На практике используются излучатели с резонансным размером, определяемым (7.2) при m=0. Такие излучатели имеют минимальные габаритные размеры пластинки. Колебания поля и тока в излучателе с указанной длиной в дальнейшем будем называть низшим типом колебаний.

Если длина отрезка полосковой линии кратна четному числу полуволн квази-T-волны, т. е.

(7.4)

то излучатель в направлении нормали к плоскости экрана практически не излучает.

Разработка эффективных печатных излучателей и ФАР, построенных на их основе, тесно связана с созданием математических моделей, содержащих полное электродинамическое описание конструктивных элементов излучателей. Подробные модели и реализующие их программы для ЭВМ существуют и используются в САПР при создании ФАР. Ниже приводится приближенная методика расчета печатных излучателей, позволяющая оценить их характеристики и выбрать исходные варианты для моделирования на ЭВМ. Кроме того, даются справочные сведения о характеристиках печатных излучателей в плоских ФАР, полученные численными методами с учетом взаимовлияния излучателей.

ЭКВИВАЛЕНТНАЯ СХЕМА

Прямоугольная пластинка (рис. 7.3), расположенная над экраном, представлена отрезком

эквивалентной двухпроводной линии, нагруженным на проводимости торцевых щелей. Эти проводимости являются комплексными величинами с емкостной реактивной частью, обусловленной концентрацией поля у торцевой кромки плоского проводника (см. рис. 7.2, а). Возбудители - штырь и отверстие связи - на эквивалентной схеме (см. рис. 7.3) представлены цепочкой элементов, состоящей из последовательно включенных реактивного сопротивления, штыря и параллельно включенных реактивной проводимости и идеального трансформатора, соответствующих переходу от линии передачи к излучателю через отверстие связи.

Если толщина экрана существенно меньше длины волны и штырь является продолжением центрального проводника коаксиального волновода, то коэффициент трансформации идеального трансформатора можно положить равным единице, а реактивность параллельно включенного элемента - нулю.

Входное сопротивление излучателя

(7.5)

где

(7.6)

- входное сопротивление отрезка эквивалентной двухпроводной линии длиной нагруженной на сопротивление торцевой щели ZЩ1;

(7.7)

- входное сопротивление отрезка эквивалентной двухпроводной линии длиной нагруженной на ZЩ2; ZШТ — индуктивное сопротивление штыря.

В (7.5) — (7.7) W — волновое сопротивление полосковой линии; b — коэффициент фазы квази-T-волны, yШТ— смещение штыря вдоль оси у относительно средней точки.