_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Технология получения монокристаллического Si

Технология получения монокристаллического Si

Страница: 3/6

Образующаяся в процессе синтеза ТХС парогазовая смесь посту­пает в зону охлаждения, где ее быстро охлаждают до 40 —130 °С, в результате чего выделяются в виде пыли твердые частицы примеси (хлориды железа, алюминия и др.), которые вместе с частицами непрореагировавшего кремния и полихлоридов (SinCl2n+2) затем отделяются с помощью фильтров. После очистки от пыли (являю­щейся взрывоопасным продуктом) парогазовая смесь поступает на конденсацию при температуре —70 °С. Происходит отделение SiHCl3 и SiCl4 (температуры кипения 31,8 и 57,2 °С соответственно) от водорода и НСl (температура кипения 84 °С). Полученная в ре­зультате конденсации смесь состоит в основном из ТХС (до 90— 95 %), остальное — тетрахлорид кремния, который отделяют затем ректификацией. Выделяемый в результате разделения тетрахлорид кремния в дальнейшем используют для производства силиконов, кварцевого стекла, а также для получения трихлорсилана путем дополнительного гидрирования в присутствии катализатора.

Очистка ТХС

Получаемый ТХС содержит большое количество примесей, очист­ка от которых представляет сложную задачу. Наиболее эффектив­ным методом очистки является ректификация, однако осуществить полную и глубокую очистку от примесей, имеющих различную фи­зико-химическую природу, применяя только ректификацию, слож­но. В связи с этим для увеличения глубины очистки по ряду приме­сей применяются дополнительные меры.

Так, например, для примесей, трудно очищаемых кристаллиза­ционными методами (бор, фосфор, углерод), необходима наиболее глубокая очистка ТХС. Поэтому для повышения эффективности очистки эти микропримеси переводят в нелетучие или комплексные соединения. Для очистки от бора, например, пары ТХС пропускают через алюминиевую стружку при 120 °С. Поверхность стружки, поглощая бор, приводит к почти полной очистке от него ТХС. По­бочно образующийся хлорид алюминия далее возгоняют при темпе­ратере 220—250 °С, а затем отделяют фракционной конденсацией.

Кроме алюминия могут быть использованы серебро, медь или сурь­ма. Добавка меди к алюминию позволяет одновременно очищать ТХС от мышьяка и сурьмы. Повысить эффективность очистки от бора позволяет также введение в ТХС пента- или оксихлоридев фос­фора. При этом образуются нелетучие комплексные соединения фос­фора с бором состава РСl5·ВСl3 или РОС13·ВСl3, которые затем отде­ляют ректификацией. Перевод бора в нелетучие соединения может быть также осуществлен путем добавления в ТХС трифенилхлор­метана (или триметиламина, ацетонитрила, аминокислоты, кетона и т. д.), приводящего к образованию с бором комплекса типа (С6Н5)3С ·ВСl3, который затем удаляют ректификацией. Очистку от борсодержащих примесей осуществляют также адсорбцией в реак­торах, заполненных алюмогелем или другими гелями (TiO2, Fe2O3, Mg(OH)2) с последующей ректификацией ТХС.

Для очистки от фосфора ТХС насыщают хлором с переводом трихлорида фосфора в пентахлорид. При добавлении в раствор хло­рида алюминия образуется нелетучее соединение РСl5 ·АlСl3, кото­рое затем удаляется ректификацией.

Контроль чистоты получаемого после очистки ТХС осуществля­ют методами ИК-спектроскопии, хроматографии, а также измере­нием типа и величины проводимости тестовых образцов кремния, получаемых из проб ТХС. Тестовый метод существует в двух модифи­кациях. В соответствии с первой на лабораторной установке осаж­дением из газовой фазы получают поликристаллический стержень кремния диаметром 10—20 мм. Далее из него бестигельной зонной плавкой выращивают контрольный монокристалл, по типу прово­димости и удельному сопротивлению которого судят о чистоте ТХС. Для определения концентрации доноров проводят один проход зоны в аргоне или вакууме и получают монокристалл n-типа, по удельному сопротивлению которого судят о чистоте по донорам (удельное сопротивление по донорам); для определения концентра­ции бора приводят 5—15 проходов зоны в вакууме, в результате чего получают монокристалл р-типа, по удельному сопротивлению которого судят о чистоте по бору (удельное сопротивление по бору).

По второй модификации тестового метода монокристалл крем­ния выращивают непосредственно из газовой фазы на монокристал­лический стержень в миниатюрном кварцевом реакторе и далее измеряют его удельное сопротивление.

Остаточное содержание микропримесей в ТХС после очистки не должно превышать, % мас: бора — 3·10-8, фосфора— 1·10-7, мышьяка — 5·10-10, углерода (в виде углеводородов) — 5·10-7.

По электрическим измерениям тестовых образцов остаточное содержание доноров должно обеспечивать удельное сопротивление кремния n-типа не менее 5000 Ом·см, а по акцепторам у кристаллов р-типа — не менее 8000 Ом·см.

Другие методы получения газовых соединений Si

Технически и экономически конкурентоспособным по сравнению с рассмотренным является также метод получения поликристаллического кремния путем разложения силана SiH4 высокой чистоты. процесс получения которого сводится к следующему.

Путем сплавления технического кремния и магния в водороде при 550°С получают силицид магния Mg2Si, который затем разлагают хлоридом аммония по реакции

Mg2Si+4NH4Cl→SiH4+2MgCl2+ +4NH3 (4)

в среде жидкого аммиака при температуре —30 °С. Отде­ляемый моносилан далее поступает на ректификационную очистку, в результате которой содержание примесей снижается до уровня менее 10-8 — 10-7%.

Известны и другие методы получения летучих соединений крем­ния — хлорирование или иодирование технического кремния, про­дуктами которых являются тетрахлорид SiCl4 или тетраиодид крем­ния SiJ4.

Восстановление очищенного трихлорсилана

Восстановление очищенного трихлорсилана и в результате этого получение поликристаллического кремния проводят в атмосфере водорода

SiHCl3(Г) + H2(Г) →Si(T) + 3HCl(Г) (5)

Получение электронного кремния

на поверхности разогретых кремниевых стержней — основах диаметром 4—8 мм (иногда до 30 мм), получаемых методом выращива­ния с пьедестала. В некоторых технологиях вместо цилиндрических стержней используются пластинчатые (толщиной 1—5 мм и шириной 30—100 мм) с большей площадью осаждения. Материалом для выращивания стержней служит высококачественный поликристаллический кремний. Поверхность стержней – основ подвергают ультра­звуковой очистке, травлению в смеси кислот (например, HF+ + HNO3), отмывке и сушке. К стержням – основам для получения вы­сококачественного поликристаллического кремния предъявляются высокие требования по чистоте: они должны иметь удельное сопро­тивление по донорам >700 Ом·см и по бору >5000 Ом·см.

Из стержней изготовляют электронагреватели (например, П-об­разной формы) и их нагрев осуществляют пропусканием электри­ческого тока. По мере роста диаметра стержней силу тока посте­пенно увеличивают.

Выбор условий водородного восстановления ТХС осуществляют на основе оптимальной взаимосвязи следующих параметров про­цесса: