_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Обеспечение качества электроэнергии в распределительных сетях, питающих сельскохозяйственных потребителей

Обеспечение качества электроэнергии в распределительных сетях, питающих сельскохозяйственных потребителей

Страница: 3/5

3.2. Параметры ЛЭП

Расчетная схема ЛЭП представлена на рис.3.

Параметры схемы определяются выражениями

; ;

где сопротивление и проводимости Ом/км и См/км

l- длина линии, км

Рис.3. Расчетная схема участка ЛЭП

( 4)

t-температура воздуха

ro20- сопротивление 1км провода, приводится в справочниках.

Для провода А35 при температуре –20оС

( 5)

где Dср –среднее геометрическое расстояние между проводами фаз

Зависимость Dср от напряжения сети приведена в табл.6

Таблица 6. Среднегеометрические расстояния между фазами ЛЭП

Номинальное

Напряжение,кВ

0.4

10

35

110

Dcp, м

0.8

1.1

3.5

5

Do- диаметр провода, находится в справочниках.

Для провода АС70 Do=11.4мм

Для ЛЭП 35кВ с проводом АС70 найдем Хо

. ( 6)

Реактивная мощность, генерируемая ЛЭП

. ( 7)

Таблица 4. Параметры ЛЭП схемы

Для ЛЭП 35 кВ генерация реактивной мощности становится значительной и ее необходимо учитывать в расчетах.

4. Расчет режима сети

Расчет режим сети проводится в два этапа:

На первом этапе рассчитываются мощности, протекающие в ЛЭП и трансформаторах, потери мощности и напряжения в ЛЭП и трансформаторах. Расчет проводится на основании величин нагрузок концов ЛЭП и вторичных обмоток трансформаторов. Расчет начинается от самых удаленных узлов и заканчивается трансформатором центра питания. На втором этапе рассчитываются отклонения напряжения в узлах при заданном отклонении питающего узла 11100. Расчет начинается с питающего трансформатора и заканчивается самыми удаленными узлами сети.

Мощность конца ЛЭП равна

( 8)

где - мощность начала следующей ЛЭП

- мощность потребляемая подключенным к узлу n трансформатором

- эквивалентна мощность подключенных к узлу нагрузок и и ЛЭП, не указанных в схеме

Аналогично рассчитывается реактивная мощность конца ЛЭП.

( 9)

Для конца ЛЭП 7 (узлы присоединения1142-1143), к которому присоединены трансформатор и местная нагрузка).

P7 =0+40.4+300=340.43кВт

Q5 =0+100+43.7=143.7кВАр

находятся потери мощности в ЛЭП

( 10)

( 11)

Мощность начала ЛЭП 5

=340.6+10.6=351.2 кВт ( 12)

=143.7+4.9-3.169=145.6кВАр ( 13)

Потери напряжения в ЛЭП в % от номинального напряжения

( 14)

Мощности обмотки низкого напряжения трансформатора находятся по тем же уравнениям, что и для ЛЭП. По таким же уравнениям рассчитываются потери мощности и напряжения. Мощность обмотки высокого напряжения рассчитывается по уравнениям

( 15)

( 16)

В табл.5 отражен расчет режима ЛЭП для максимальной зимней нагрузки

В табл. 6 отражен расчет режима трансформаторов для максимальной зимней нагрузке

На втором этапе рассчитываются отклонения напряжения узлов при заданном напряжении сети 110кВ ( узел 11100)

Отклонение напряжения следующего узла сети определяется путем вычитания из отклонения напряжения предыдущего узла потери напряжения соединяющего узлы элемента –ЛЭП или трансформатора. Для трансформатора к отклонению напряжения добавляется величина добавки напряжения E за счет изменения позиции РБВ или РПН.

Пример расчета отклонений напряжений узлов отражен в табл. 7.

Анализ режима сети по величинам мощностей используется для оценки величины потребляемой мощности, величин потерь мощностей в ЛЭП и трансформаторах.

В таблице 8 отражен режим схемы для мощностей.

Таблица 5. Режим ЛЭП для максимальной зимней нагрузки

Таблица 6: Режим трансформаторов для максимальной зимней нагрузки

Таблица 7. Режим узлов сети для зимнего максимума

Таблица 8. Мощности сети для режимов зимы и лета

Из таблицы 8 видно, что потери в сети активной мощности максимальны зимой и составляют 6.39% и обусловлены в основном потерями в ЛЭП. Потери реактивной мощности обусловлены в основном трансформаторами. Потери реактивной мощности в ЛЭП и генерация реактивной мощностью ЛЭП близки по величине

.

6. Обеспечение режима сети по отклонению напряжений в течение года

Для оценки изменения режима отклонений в течении года проводятся расчеты максимальных и минимальных режимов для лета и зимы. Для этой цели проводятся суточные измерения режимов в течении одной недели и по этим измерениям определяются режимы. Для лета и зимы выбираются добавки напряжения на трансформаторах. Величины добавок для рассматриваемой схемы приведены в табл.9