_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Лавинно-пролетный диод

Лавинно-пролетный диод

Страница: 1/4

Содержание

Введение

3

1 Основные особенности лавинно-пролетных диодов .

4

2 Диоды с полевой эмиссией

9

3 Принцип работы ЛПД

15

Заключение

19

Список использованной литературы .

20

ВВЕДЕНИЕ

Настоятельная необходимость миниатюризации аппа­ратуры СВЧ, повышение ее экономичности и надежности вызвала быстрый рост рабочих частот полупроводнико­вых приборов. Наряду с большими успехами в техноло­гии транзисторов этому способствовало открытие новых физических явлений в полупроводниках, сделавшее воз­можным разработку приборов, адекватных СВЧ диапа­зону.

Одним из первых явлений такого рода было обнару­женное СВЧ излучение при ударной ионизации в р-п переходах, послужившее основой для создания в 1959 г. новых СВЧ приборов—лавинно пролетных диодов (ЛПД).

На базе ЛПД создаются и быстро совершенствуются разнообразные приборы и устройства, в первую очередь генераторы когерентных и шумовых колебаний сантиметрового и миллиметрового диапазонов. Малые габариты и вес, экономичность, виброустойчивость и т. п. позволяют отнести генераторы на ЛПД к числу наиболее перспектив­ных источников электромагнитных колебаний СВЧ, открывающих широкие возможности развития СВЧ микросхемотехники.

1 ОСНОВНЫЕ ОСОБЕННОСТИ ЛАВИННО-ПРОЛЕТНЫХ ДИОДОВ

Характерной особенностью развития современной ра­диотехники является быстрое продвижение полупроводниковых приборов в область сверхвысоких частот. Про­гресс в этом направлении был достигнут в результате значительного усовершенствования технологии изготовления высокочастотных транзисторов, разработки тун­нельных диодов и диодов с переменной емкостью (варакторов). Хотя все эти приборы появились совсем недавно, они уже широко применяются в диапазоне СВЧ в ка­честве элементов высокочувствительных приемных устройств и умножительных цепочек. Однако до послед­него времени не удавалось создать эффективного авто­генератора сантиметровых волн, который мог бы слу­жить твердотельным эквивалентом одного из основных электровакуумных приборов СВЧ — отражательного кли­строна.

Этот пробел в значительной мере восполняет новый полупроводниковый СВЧ прибор — лавинно-пролетный диод (ЛПД), являющийся основой целого класса СВЧ устройств; генераторов, усилителей и преобразователей частоты.

В процессе исследования зависимости коэффициента преобразования частоты в диапазоне СВЧ на параме­трических полупроводниковых диодах от величины при­ложенного к диоду постоянного смещения и мощности накачки было установлено, что при больших значениях обратного напряжения, превышающих пробивное, неко­торые из диодов генерировали СВЧ колебания и в от­сутствие сигнала накачки.

Диффузионные диоды с меза-структурой и одним р-п переходом, сформированным путем диффузии мышьяка в германий р-типа, легированный галлием (рис. 1).

 

Рис. 1. Структура диода.

Рис. 2. Схема включения ЛПД в цепь постоянного тока.

Диод помещали в высокочастотный резонатор и вклю­чали в цепь постоянного тока, как показано на рис. 2. Генерация СВЧ колебаний наблюдалась при отрица­тельных напряжениях, на 0,5—1,5 В, превышающих про­бивное напряжение, когда через диод проходил постоян­ный ток от 0,5 до 10—15 мА. Мощность колебаний в не­прерывном режиме составляла для различных диодов величину от десятков микроватт до нескольких милли­ватт. Спектр колебаний в зависимости от тока, текущего через диод, и настройки резонатора изменялся от близ­кого к шумовому до почти монохроматического. Длина волны колебаний лежала в пределах от 0,8 до 10 см и зависела от размеров резонатора и значений реактив­ных параметров диодов. Перестраивая резонатор (на­пример, перемещением короткозамыкающего плунжера), можно было плавно изменять частоту и мощность ко­лебаний. В недовозбужденном режиме вблизи порога генерации наблюдалось регенеративное усиление СВЧ колебаний с коэффициентом усиления 15—20 дб. Диоды на которых были получены генерация и усиление СВЧ колебаний, как правило, не давали заметной паразитной генерации на более низких частотах, хотя не при­нималось специальных мер для ее подавления.

Рис 3. Обратная ветвь вольтамперной характеристики ЛПД

Уже первые эксперименты показали, что основным признаком генерирующих диодов, является форма об­ратной ветви их вольтамперной характеристики, пока­занной на рис. З сплошной линией. Как видно из ри­сунка, особенностью этой харак­теристики является резкий излом при пробивном напряжении Uпр. При отрицательных напряжениях, меньших (по абсолютной величи­не) Uпр, ток, текущий через диод (ток насыщения), очень мал и со­ставляет для различных диодов от 0,01 до 1 мкA. При U=Unp вольтамперная характеристика претер­певает резкий излом, ток резко возрастает и при дальнейшем уве­личении отрицательного смещения растет почти линейно с на­пряжением. Максимальное значе­ние постоянного тока диода огра­ничивалось опасностью теплового пробоя, выводящего диод из строя.

Наклон вольтамперной характеристики на рабочем участке был всюду положительным и соответствовал положительному дифференциальному сопротивлению Rд слабо зависящему от тока и лежащему для различных диодов в интервале 50—300 Ом.

Вольтамперная характеристика негенерировавших диодов, как правило, отличалась более или менее плав­ным увеличением тока вблизи пробивного напряжения (штриховая кривая рис. З) и большим значением диф­ференциального сопротивления Rд на этом участке. На некоторых диодах при U>Uпр наблюдались скачки тока, соответствующие участкам вольтамперной характеристи­ки с отрицательным наклоном. Эти диоды в ряде слу­чаев давали низкочастотную генерацию (1—10 кГц), но, как правило, не генерировали СВЧ колебания.

Последующие эксперименты показали, что подобные же явления (генерация СВЧ колебаний) могут наблю­даться и на диодах другой структуры: диффузионных на базе n-германия, сплавных германиевых диодах с рез­ким р-п переходом, диффузионных и сплавных кремние­вых диодах и т. д.

Таким образом, была установлена возможность эф­фективной (с КПД > 1%) генерации, а также усиле­ния СВЧ колебаний полупроводниковым диодом, вольтамперная характеристика которого не имеет «падающих» участков или, иначе говоря, не имеет «статического» от­рицательного сопротивления.

Физическая при­рода этого динамического отрицательного сопротивления связана с процессом ударной ионизации в р-п переходе и с взаимодействием образованной при этом лавины свободных носителей тока (электронов и дырок) с вы­сокочастотным полем в слое объемного заряда (запой­ном слое) обратно смещенного р-п перехода. Действи­тельно, известно два основных механизма резкого воз­растания тока в обратно смещенном р-п переходе — ла­винный пробой вследствие ударной ионизации атомов кристалла подвижными электронами и дырками и эф­фект Зинера — туннельный переход носителей заряда из заполненной зоны одного полупроводника в свободную зону другого. Эффект Зинера проявляется лишь в достаточно узких р-п переходах с напряжением пробоя меньше 5 В для германия. В нашем случае это напряжение превышало 20 В, так что возрастание тока можно было целиком отнести за счет ударной иони­зации. Исследования подтвердили это предположение, и диоды, в которых наблюдался эффект генерации СВЧ колебаний, были названы лавинно-пролетными.