Студентам > Курсовые > Затухание ЭМВ при распространении в средах с конечной проводимостью
Затухание ЭМВ при распространении в средах с конечной проводимостьюСтраница: 2/3
откуда
Так как x в этом равенстве может принимать любые значения, коэффициенты при экспонентах должны равняться нулю:
Поэтому
(1.9)
Отсюда следует ()=0 (так как ([])=0), т. е. векторы и ортогональны к направлению и друг к другу.
2. Связь характеристик распространения с параметрами среды
Установим связь между р и k. Из (1.8) получим (2.1)
Если задана периодичность в пространстве, т. е. k, то р можно найти из уравнения (2.1)
Тогда
где
Распространение возможно, если q действительно. Волновой процесс, в котором поверхности равных амплитуд и поверхности равных фаз являются плоскостями, называется плоской волной. Простейшим случаем плоской волны является плоская однородная волна. В плоской однородной волне плоскости равных амплитуд совпадают с плоскостями равных фаз. Фазовая скорость такой волны будет равна
Если , то q — мнимое, и распространения нет: существует
пространственная периодичность по x и монотонное затухание. Начальная форма волны не смещается вдоль оси x, волновое явление вырождается в диффузию.
Частный случай временной зависимости р = iw. Тогда
(2.2)
Таким образом, при волновое число k комплексно. Обозначим k=a+ib, где a — фазовая константа, b — коэффициент затухания. Тогда
(2.3)
Следовательно, при р=iw имеет место волновой процесс с затуханием, если .
Исследуем фазовую скорость волны в среде с конечными e и s. Поскольку волновое число комплексно: k=a+ib, имеем
(2 считаем равным нулю).
В общем случае 1 также комплексно: ,
где a, b, , q — действительные числа. Отсюда получаем выражение фазовой скорости
Действительно, так как представляет скорость, с которой движется плоскость постоянной фазы =const
то
откуда
Для определения степени затухания и фазовой скорости нужно вычислить a и b. Из уравнений (2.3) получаем
Введем обозначение
тогда
или
Здесь нужно оставить знак +, так как a — действительное число
(2.4)
Аналогично получим для b (2.5)
Отсюда находим фазовую скорость (2.6)
Зависимость фазовой скорости от частоты сложная: если e, m, s не зависят от частоты, то с увеличением w фазовая скорость увеличивается, т. е. в сложной волне гармоники убегают вперед.
Рассмотрим зависимость поглощения b, определяемого равенством (2.5), от электрических характеристик среды. Член представляет отношение , так как . Следовательно,
Но , поэтому при tgd<<1
Ограничившись двумя членами разложения, получим
(2.7)
Следовательно, по поглощению волны можно определить tgd:
при (единица длины) получаем
Измеряется b в неперах
|