Студентам > Курсовые > Цифровой генератор синусоидальных колебаний
Цифровой генератор синусоидальных колебанийСтраница: 2/3
В общем виде зависимость выходного напряжения UЦАП биполярного ЦАП от входного кода числа Х при опорном напряжении Uоп выражается формулой .
Максимальная частота генерируемых сигналов определяется по формуле .
Расчеты параметров схемы, обеспечивающих заданные условия.
Общая погрешность аппроксимации синусоиды складывается из погрешности квантования сигнала по уровню, погрешности дискретизации сигнала по времени и погрешности линейности ЦАП.
Наиболее критичной в нашей схеме является погрешность погрешности линейности ЦАП, т. к. он является основой схемы. Выберем в качестве ЦАП микросхему К1108ПА2 – 8 разрядный функционально законченный цифро-аналоговый преобразователь двоичного кода в напряжение, выполненный по биполярной технологии и имеющий следующие характеристики:
Uп = ± 5 В;
л =±0.28 %;
Uвых=2.5 В;
tуст =1.5 мкс.
Микросхему ПЗУ надо выбирать по объёму памяти и времени выборки адреса.
В качестве ПЗУ остановимся на микросхеме КР556РТ17 емкостью 512 x 8 бит, обладающая следующими параметрами:
tв.а. = 50 нс.; Uп = + 5 В.
Рассчитаем теперь общую погрешность аппроксимации синусоиды: , , , , . ,
Полученная общая погрешность аппроксимации не превышает заданного допустимого значения 1 %.
6 – разрядный счётчик построим на основе микросхемы К555ИЕ19, содержащей два четырёхразрядных счётчика.
В качестве задающего (тактового) генератора в проектируемом устройстве будем использовать R-C генератор на основе логических инвертирующих элементах, обеспечивающий заданный коэффициент нестабильности частоты.
При заданном диапазоне частот сигнала на выходе устройства (100 Гц – 1 кГц) и выбранном числе шагов дискретизации (64) максимальная частота тактовых импульсов определяется как ,
а минимальная – как .
Предельная частота тактового генератора зависит от быстродействия ЦАП:
, что удовлетворяет используемому режиму генератора.
Рассчитаем теперь значения элементов генератора тактовых импульсов для обеспечения данного диапазона частот.
F = 1/(2 * π * R * C).
Задавшись R1 = 2.5 кОм, R2 = 1.5 кОм.
При С = 6.8 нФ F = 63,6 кГц; T=15,7 мкс.
При С = 68 нФ F = 6,36 кГц; T=157 мкс.
Таким образом, в качестве конденсатора С возьмём переменный конденсатор на 68 нФ.
А для более точной подстройки частоты последовательно соединим постоянный резистор сопротивлением 2 кОм и переменный – сопротивлением 1 кОм.
Для обеспечения высокой стабильности задающего генератора выберем высококачественные керамические конденсаторы и термостабильные резисторы.
Исходя из того, что от проектируемого генератора не требуется малое энергопотребление, то в качестве цифровой выберем ТТЛ базу как более распространённую, надёжную и дешевую.
Так как рабочие частоты не превышают 20 Мгц, то выберем К555 – тую серию
как более распространённую, надёжную и дешевую.
имеющие следующие параметры:
- напряжение питания +5В,
- диапазон рабочих температур от –10 до +700С,
- уровень логического нуля не более 0.4В,
- выходной уровень логической единицы не менее 2.6В,
- средняя потребляемая одним логическим элементом мощность 2 мВт,
- средняя задержка распространения сигнала 20 нс.
Максимальный потребляемый устройством ток не превышает 0.35 А.
Заданная амплитуда сигнала на выходе устройства будет обеспечиваться усилителем на ОУ с коэффициентом усиления .
При этом Rос=3.6 кОм, а R=1 кОм.
В качестве ОУ подойдут микросхемы К140УД26, имеющую следующие параметры:
- напряжение питания ±15 В;
- ток потребления 4,7 мА;
- коэффициент усиления 106;
- напряжение смещения 0,025 мВ;
- входной ток 35 нА.
В соответствии с выбранными ЦАП, ПЗУ и параметрами самого устройства в качестве используемых в нем цифровых микросхем будут применены микросхемы серии 555, имеющие следующие параметры:
- напряжение питания +5В,
- диапазон рабочих температур от –10 до +700С,
- уровень логического нуля не более 0.4В,
- выходной уровень логической единицы не менее 2.6В,
- средняя потребляемая одним логическим элементом мощность 2 мВт,
- средняя задержка распространения сигнала 20 нс.
- Максимальный потребляемый устройством ток не превышает 0.35 А.
Расчёт значений данных хранимых в ПЗУ.
Содержимое ячеек ПЗУ рассчитывается по формуле ,
где n=6, m=8, А=0…2n-1.
Полученные в результате расчета 64 8-разрядных числа от 0 до 255 и составляют содержимое микросхем ПЗУ (табл.1). Содержимое ПЗУ | Адрес | Содержимое ячеек | 00 | 80 | 8C | 98 | A5 | 04 | B0 | BC | C6 | D0 | 08 | DA | E2 | EA | F0 | 0C | F5 | FA | FD | FE | 10 | FF | FE | FD | FA | 14 | F5 | F0 | EA | E2 | 18 | DA | D0 | C6 | BC | 1C | B0 | A5 | 98 | 8C | 20 | 80 | 73 | 67 | 5A | 24 | 4F | 43 | 39 | 2F | 28 | 25 | 1D | 15 | 0F | 2C | 0A | 05 | 02 | 01 | 30 | 00 | 01 | 02 | 05 | 34 | 0A | 0F | 15 | 1D | 38 | 25 | 2F | 39 | 43 | 3C | 4F | 5A | 67 | 73 |
|