_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Автоматизированное проектирование СБИС на базовых матричных кристаллах

Автоматизированное проектирование СБИС на базовых матричных кристаллах

Страница: 2/3

гут присутствовать специализированные макроячейки, реализующие ти-

повые функциональные узлы (например, запоминающее устройство).

 

     Помимо ячеек, являющихся заготовками  для  реализации элемен-

тов, на БМК могут присутствовать фиксированные части соединений. К

ним относятся шины питания, земли, синхронизации и  заготовки  для

реализации частей сигнальных соединений. Например,  для макроячеек

(b) шины питания и земли проводятся вдоль верхней и  нижней сторон

соответственно. Для макроячеек (a,d) шины проводятся  вдоль линии,

разделяюшей верхний и нижний ряды ячеек, что приводит к уменьшению

потерь площади кристалла. Для реализации сигнальных  соединений на

БМК получили распространение  два  вида  заготовок:  фиксированное

расположение однонаправленных  (горизонтальных  или  вертикальных)

участков трасс в олном слое; фиксированное  расположение  участков

трасс в одном слое и контрактных окон, обеспечиваюших выход фикси-

рованных трасс во второй слой.

 

     В первом случае для реализации коммутации проектируемой схемы

не требуется разработка фотошаблона  фиксированного  слоя,  т.  е.

число разрабатываемых фотошаблонов уменьшается на единицу. Во вто-

ром случае число разрабатываемых фотошаблонов уменьшается  на  два

(не требуется также фотошаблон контактных окон).  Отметим,  что  в

настоящее время получили распространение различные  виды  формы  и

расположения фиксированных трасс и  контактных  окон. Целесообраз-

ность использования того или иного вида определяется типом макроя-

чеек, степеныо интеграции кристалла и объемом производства.

 

     При реализации соединений на  БМК  часто  возникает необходи-

мость проведения трассы через область, занятую макроячейкой. Такую

трассу будем называть транзитной. Для обеспечения такой возможнос-

ти допускается: проведение соединения через область, занятую ячей-

кой, проведение через зазоры между ячейками. Первый  способ  может

применяться, если в ячейке не реализуется элемент,  или реализация

элемента допускает использование фиксированных  трасс  и неподклю-

ченных выводов для проведения транзитной трассы.

 

     Таким образом, в настоящее время разработано большое многооб-

разие типов БМК, которые имеют различные пераметры. При проектиро-

вании микросхем на БМК необходимо учитывать конструктивно-техноло-

гические характеристики кристалла. К ним  относятся геометрические

параметры кристалла, форма и расположение макроячеек  на кристалле

и ячеек внутри макроячеек, расположение шин  и  способ  коммутации

сигнальных соединений.

 

     Итак, следует отметить, что задача определения  структуры БМК

является достаточно сложной, и  в  настоящее  время  она  решается

конструктором преимущественно с использованием средств автоматиза-

ции.

              РЕАЛИЗАЦИЯ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ НА БМК

 

     Выше было показано, что БМК представляет собой  заготовку, на

которой определенным образом размещены электронные  приборы (тран-

зисторы и др.). Следовательно, проектирование микросхемы можно бы-

ло бы вести и на приборном уровне. Однако этот способ  не  находит

распространения на практике по следующим причинам. Во-первых, воз-

никает задача большой размерности.  Во-вторых,  учитывая повторяе-

мость структуры частей кристалла и  логической  схемы,  приходится

многократно решать однотипные задачи. Поэтому применение БМК пред-

полагает использование библиотеки  типовых  логических  злелентов,

которая разрабатывается одновременно с конструкцией  БМК.  В  этом

отношении проектирование матричных БИС подобно  проектированию пе-

чатных плат на базе типовых серий микросхем.

 

     Таким образом, при применении БМК проектируемая  схема описы-

вается на уровне логических элементов, а каждый элемент содержится

в библиотеке. Эта библиотека формируется заранее. Она должна обла-

дать функциональной полнотой для реализации широкого спектра схем.

Традиционно подобные библиотеки содержат следующие элементы: И-НЕ,

ИЛИ-НЕ, триггер, входные, выходные усилители и др.  Для реализации

элемента используется одна или несколько ячеек  кристалла,  т.  е.

размеры элемента всегда кратны размерам ячейки. Топология элемента

разрабатывается на основе конструкции ячейки и  представляет собой

совокупность трасс, которые совместно с  имеющимися  на  кристалле

постоянными частями реализуют требуемую функцию.  Именно  описание

указанных соединений и хранится в библиотеке.

 

     В зависимости от того, на каких ячейках реализуются элементы,

можно выделить внешние (согласующие усилители,  буферные  схемы  и

др.) и внутренние, или просто логические  элементы.  Если  внешние

элементы имеют форму прямоугольников независимо от типа кристалла,

то для логических элементов сушествует большое  разнообразие форм,

которое определяется типом макроячеек. Так, для макроячейки, пока-

 

         ╔════════╗  ╔════════╗  ╔═══╤════╗  ╔════════╗

         ║        ║  ║        ║  ║███│    ║  ║████████║

         ╟────┐   ║  ╟────────╢  ║███└────╢  ║████████║

         ║████│   ║  ║████████║  ║████████║  ║████████║

         ╚════╧═══╝  ╚════════╝  ╚════════╝  ╚════════╝

 

                          рис. 5

 

занной на рис. 4(a), возможные формы элементов приведены  на  рис.

5. При этом следует иметь в виду, что каждая форма может быть реа-

лизована с поворотом  относительно  центра  макроячейки  на  угол,

кратный 90'. Для расширения возможностей  наилучшего использования

площади кристалла для каждого логического элемента разрабатываются

варианты тапологии, позволяющие его реализовать в различных частях

макроячейки. Поскольку структура макроячейки  обладает симметрией,

то эти варианты топологии, как правило, могут быть получены из ба-

зового вращением относительно осей симметрии.

 

     При проектировании на уровне элементов  существенными данными

являются форма логического элемента  и  расположение  его  выводов

(цоколевка).

 

       СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МАТРИЧНЫХ БИС

 

                  ПОСТАНОВКА ЗАДАЧИ ПРОЕКТИРОВАНИЯ

 

     Задача конструирования матричных БИС состоит  в  переходе  от

заданной логической схемы к ее  физической  реализации  на  основе

БМК. При этом исходные данные представляют собой описание логичес-

кой схемы на уровне библиотечных логических  элементов, требования

к его функционированию, описание конструкции  БМК  и  библиотечных

элементов, а также технологические ограничения. Требуется получить

конструкторскую документацию для изготовления работоспособной мат-

ричной БИС. Важной характеристикой  любой  электронной  аппаратуры

является плотность монтажа. При проектировании матричных БИС плот-

ность монтажа определяется исходными данными.  При  этом  возможна

ситуация, когда искомый вариант реализации  не  существует.  Тогда

выбирается одна из двух альтернатив: либо матричная БИС проектиру-

ется на БМК больших размеров, либо часть схемы переносится на дру-

гой кристалл, т.  е.  уменьшается  объем  проектируемой  схемы.

 

     Основным требованием к проекту является  100%-ная  реализация

соединений схемы, а традиционным критерием, оценивающими проект, -

суммарная длина соединений. Именно этот показатель связан с такими

эксплуатационными параметрами, как надежность, помехоустойчивость,

быстродействие. В целом задачи конструирования матричных БИС и пе-

чатных плат родственны, что определяется заранее  заданной  формой

элементов и высоким уровнем унификации конструкций. Вместе  с  тем

имеют место следующие отличия:

     - элементы матричных БИС имеют более сложную  форму  (не пря-

моугольную);

     - наличие нескольких вариантов реализации одного  и  того  же

типа элемента;

     - позиции для размещения элементов группируются  в макроячей-

ки;

     - элементы могут содержать проходы для транзитных трасс;

     - равномерное распределение внешних элементов по всей перифе-

рии кристалла;

     - ячейка БМК, не занятая элементом, может  использоваться для

реализации соединений;

     - число элементов матричных БИС значительно  превышает значе-

ние соответствующего параметра печат ных плат.

 

     Перечисленные отличия не позволяют  непосредственно использо-

вать САПР печатных плат для проектирования матричных  БИС. Поэтому

в настоящее время используются и разрабатываются новые САПР, пред-

назначенные для проектирования матричных БИС, а  также дорабатыва-

ются и модернизируются уже действующие САПР печатных плат  для ре-

шения новых задач. Реализация последнего способа  особенно упроща-

ется, когда в системе имеется набор программ для решения задач те-

ории графов, возникающих при конструировании.

 

     Поскольку трассировка соединений на БМК  ведется  с  заданным

шагом на дискретном рабочем поле (ДРП), то необходимо чтобы выводы

элементов попадали в клетки ДРП. Однако внешние  выводы макроячеек

могут располагаться с шагом, не кратным шагу ДРП.  В  этом  случае

используется простой прием введения фиктивных контактных площадок,

связанных с внутренними частями ячейки. Если трасса  к макроячейке

не подходит, то область фиктивной площадки остается свободной.

 

     При разработке САПР БИС на БМК необходимо  учитывать требова-

ния к системам, диктуемые спецификой решаемой задачи. К  ним отно-

сятся:

 

     1. Реализация сквозного  цикла  проектирования  от  схемы  до

комплектов машинных документов на изготовление,  контроль эксплуа-

тацию матричных БИС.

 

     2. Наличие архива данных о разработках, хранимого  на долгов-

ременных машинных носителях информации.

 

     3. Широкое применение интерактивных режимов  на  всех  этапах

проектирования.

 

     4. Обеспечение работы САПР в  режиме  коллективного пользова-