_WELCOMETO Radioland

Ãëàâíàÿ Ñõåìû Äîêóìåíòàöèÿ Ñòóäåíòàì Ïðîãðàììû Ïîèñê Top50  
Ïîèñê ïî ñàéòó



Íàâèãàöèÿ
Ãëàâíàÿ
Ñõåìû
Àâòîýëåêòðîíèêà
Àêóñòèêà
Àóäèî
Èçìåðåíèÿ
Êîìïüþòåðû
Ïèòàíèå
Ïðîã. óñòðîéñòâà
Ðàäèî
Ðàäèîøïèîíàæ
Òåëåâèäåíèå
Òåëåôîíèÿ
Öèôð. ýëåêòðîíèêà
Äðóãèå
Äîáàâèòü
Äîêóìåíòàöèÿ
Ìèêðîñõåìû
Òðàíçèñòîðû
Ïðî÷åå
Ôàéëû
Óòèëèòû
Ðàäèîëþá. ðàñ÷åòû
Ïðîãðàììèðîâàíèå
Äðóãîå
Ñòóäåíòàì
Ðåôåðàòû
Êóðñîâûå
Äèïëîìû
Èíôîðìàöèÿ
Ïîèñê ïî ñàéòó
Ñàìîå ïîïóëÿðíîå
Êàðòà ñàéòà
Îáðàòíàÿ ñâÿçü

Ñòóäåíòàì


Ñòóäåíòàì > Êóðñîâûå > Ìåòîä êîíå÷íûõ ðàçíîñòåé èëè ìåòîä ñåòîê

Ìåòîä êîíå÷íûõ ðàçíîñòåé èëè ìåòîä ñåòîê

Ñòðàíèöà: 3/4

 

1)   õ=0    (ëåâàÿ ãðàíèöà îáëàñòè G)

    

      Çàìåíèì óñëîâèÿ

                                 U    = 0

                                   x=o

                                 Uxxx  = 0

                                          x=o

 

íà ñîîòâåòñòâóþùèå èì ðàçíîñòíûå óñëîâèÿ

 

 Uoj=0

U-1j=U2j - 3U1j                                         (1`)

 

 

2)  õ=à      (ïðàâàÿ ãðàíèöà îáëàñòè G)

     i=N

 

             Ux   = 0

                   x=a

             Uxxx  = 0

                       x=a                    èç òîãî ÷òî   Ui+1j - Ui-1j  = 0

                                                                           2hx

 

                                      UN+1j = UN-1j

UNj = 4 UN-1j - UN-2j                               (2`)

                                                           3

 

3)  ó=0 (íèæíÿÿ ãðàíèöà îáëàñòè G)

     j=0

 

Ui ,-1 = Ui1

Ui0 = 0                                                  (3`)

 

ýòî åñòü ðàçíîñòíûé àíàëîã Uy   = 0

                                                      y=o

                                                U   =0

                                                    y=o

 

4)   ó=b

      i=M

 

            U  = 0

               y=b               ò.å. UiM=0                                                (**)

 

Ðàñïèøåì ÷åðåç ðàçíîñòíûå ïðîèçâîäíûå  Uxx + Uyy =0 è ó÷èòûâàÿ ÷òî j=M è (**) ïîëó÷èì

 

UiM-1 = UiM+1

 

Èòàê êðàåâûå óñëîâèÿ íà ó=b èìåþò âèä

 

 UiM+1 = UiM-1

UiM = 0                                                 (4`)

 

Èòîãî íàøà çàäà÷à â ðàçíîñòíûõ ïðîèçâîäíûõ ñîñòîèò èç óðàâíåíèÿ (*) çàäàííîãî íà ñåòêå W è êðàåâûõ óñëîâèé (1`)-(4`) çàäàííûõ íà ãðàíèöå îáëàñòè G (èëè íà ãðàíèöå ñåòêè W)

 

ÏÐÈÌÅÍÅÍÈÅ ÌÅÒÎÄÀ ÇÅÉÄÅËß

 

 

Ðàññìîòðèì ïðèìåíåíèå ìåòîäà Çåéäåëÿ äëÿ íàõîæäåíèÿ ïðèáëèæåííîãî ðåøåíèÿ íàøåé  ðàçíîñòíîé çàäà÷è (*),(1`) - (4`).

 äàííîì ñëó÷àå íåèçâåñòíûìè ÿâëÿþòñÿ

 

Uij = U(xi,yj)

ãäå  xi = ihx

       yj = jhy

ïðè ÷¸ì  hx = a/N  ,

                hy = b/M

ýòî åñòü øàã ñåòêè ïî x è ïî ó ñîîòâåòñòâåííî , à N  è Ì ñîîòâåòñòâåííî êîëè÷åñòâî òî÷åê  ðàçáèåíèÿ îòðåçêîâ [0 , à] è [0 , b]

Ïîëüçóÿñü ðåçóëüòàòàìè ïðåäûäóùåãî ðàçäåëà çàïèøåì óðàâíåíèå

 

2

DU = f

 

êàê ðàçíîñòíîå óðàâíåíèå. È óïîðÿäî÷èì íåèçâåñòíûå åñòåñòâåííûì îáðàçîì ïî ñòðîêàì ñåòêè W , íà÷èíàÿ ñ íèæíåé ñòðîêè.

 

1 Ui-2j -  4  +  4   Ui-1j  +  6  -  8 + 6   Uij  -  4  +   4   Ui+1j + 1 Ui+2j +  2Ui-1j-1 -

  4           4         2  2               4        2   2      4                       4            2  2                        4                  2  2

hx         hx   hxhy             hx   hxhy  hy            hx     hxhy            hx         hxhy

 

 

-    4  +  4  Uij-1 + 2 Ui+1j-1 + 2 Ui-1j+1  -   4   +   4   Uij+1 +  2 Ui+1j+1 +  1 Uij-2 +

        2  2          4                   2   2                    2   2                          2  2            4                         2   2                        4

   hxhy    hy          hxhy          hxhy             hxhy     hy             hxhy             hy

 

 

+ 1 Uij+2  =  f ij      äëÿ   i=1 ... N-1, j=1 ... M-1

    4

           hy

è U óäîâëåòâîðÿåò êðàåâûì óñëîâèÿì (1`) - (4`), òàê êàê  â êàæäîì óðàâíåíèè ñâÿçàíû âìåñòå íå áîëåå 13 íåèçâåñòíûõ òî â ìàòðèöå À îòëè÷íû îò íóëÿ íå áîëåå 13-ýëåìåíòîâ â ñòðîêå.  ñîîòâåòñòâèè ñî âòîðûì ðàçäåëîì  ïåðåïèøåì óðàâíåíèå:

 

     (k+1)                                 (k+1)                       (k+1)                                                       (k+1)

 6   -    8   +   6   Uij      =       -  1 Uij-2     -   2   Ui-1j-1      +      4   +    4     Uij-1   -          

  4           2   2            4                                              4                         2  2                                    2   2              4              

hx      hxhy     hy                         hy                     hxhy                    hxhy       hy        

 

 

                                 (k+1)                           (k+1)                                                   (k+1)                                                                  (k)

-   2  Ui+1j-1   -    1  Ui-1j    +     4    +    4    Ui-1j            +          4    +   4    Ui+1j  -

    2   2                   4                    4                 2  2                                  4              2  2 

  hxhy                 hx                   hx        hxhy                          hx       hxhy

 

                  (k)                            (k)                                                         (k)                        (k)                             (k)

-   1  Ui+2j   -    2  Ui-1j+1    +     4     +   4    Uij+1   -   2 Ui+1j+1  -   1  Uij+2     +  fij

        4                            2   2                                2  2               4                             2   2                           4

   hx               hxhy                 hxhy       hy               hxhy               hy

 

                               (k)

Ïðè ÷åì  U  óäîâëåòâîðÿåò êðàåâûì óñëîâèÿì (1`) - (4`). Âû÷èñëåíèÿ íà÷èíàþòñÿ ñ i=1,  j=1 è ïðîäîëæàþòñÿ ëèáî ïî ñòðîêàì  ëèáî ïî ñòîëáöàì ñåòêè  W. ×èñëî íåèçâåñòíûõ â çàäà÷å n = (N-1)(M-1).

Êàê âèäíî èç âûøåèçëîæåííûõ ðàññóæäåíèé  øàáëîí â ýòîé çàäà÷å òðèíàäöàòèòî÷å÷íûé  ò.å. íà êàæäîì øàãå â ðàçíîñòíîì óðàâíåíèè ó÷àñòâóþò 13 òî÷åê (óçëîâ ñåòêè) Ðàññìîòðèì âèä ìàòðèöû À - äëÿ äàííîé çàäà÷è.