Студентам > Курсовые > Разработка программно-методического комплекса для анализа линейных цепей
Разработка программно-методического комплекса для анализа линейных цепейСтраница: 1/6
Содержание:
0. Постановка задачи (неформальная).
1. Обзор методов
математического обеспечения.
2. Выбор наиболее
необходимого.
3. Разработка
лингвистического обеспечения.
4. Выбор информационного
обеспечения.
5. Справочные данные.
6. Обмен данными между
программами.
7. Структура ПО.
8. Выбор и обоснование
инструментальных средств программирования.
9. Структура данных и система
объектов.
10. Заключение, список
используемой литературы.
1. Обзор
методов
Цель метода:
1. Составляем (или уже имеем) эквив. схему.
Эквив. схема отображает: способ связи элементов друг с
другом, физическая сущность отдельных элементов, граф же только - способ связи.
Введем правила построения эквив. схем:
1) Эквив. схема, как и граф, состоит из множества ветвей и
узлов.
2) Каждая ветвь относится
к одному из 5-ти возможных типов:
а. б. в. г. д. е. ж. з.
II IU UU
3) Каждой ветви соответствует компонентное уравнение:
а.
dU
I=C*
dt
I, U - фазовые переменные типа потока и разности потенциалов
(напряжения) в рассматриваемой ветви, С - емкость.
б.
dI
U=L*
dt
L - индуктивность
в.
U=R*I
R - сопротивление
г.
U=f1(V,t)
U - вектор фазовых переменных,
t - время, в частном случае возможное U=const
д.
I=f2(V,t)
U - вектор фазовых переменых,
I - м.б. I=const
Зависимая ветвь - ветвь, параметр которой зависит от фазовых
переменных.
4) Каждому узлу схемы соответствует определенное значение
фазовой переменной типа потенциала, каждой ветви - значения переменных I и U,
фигурирующих в компонентных уравнениях. Соединение ветвей друг с другом (т.е.
образование узлов) должно отражать взаимодействие элементов в системе.
Выполнение этого условия обеспечивает справедливость топологических уравнений
для узлов и контуров.
В качестве фазовых переменных нужно выбирать такие величины,
с помощью которых можно описывать состояния физических систем в виде
топологических и компонентных уравнений.
В ЭВМ эта схема представляется в табличном виде на
внутреннем языке.
Граф электрич. схем характеризуется некоторыми так
называемыми топологическими мат-рицами, элементами которых являются (1, 0, -1).
С помощью них можно написать независимую систему уравнений относительно токов и
напряжений ветвей на основании законов Кирхгофа. Соединения ветвей с узлами
описываются матрицей инциденции А . Число ее строк равно числу узлов L, а число столбцов - числу ветвей b. Каждый элемент матрицы
a(i, j):
ì -1 - i-я ветвь входит в j-й узел,
a(i, j) = í 1 - i-я ветвь выходит из j-го
узла,
î
0 - не соединена с j-м узлом.
Легко видеть, что одна строка матрицы линейно зависит от
всех остальных, ее обычно исключают из матрицы, и вновь полученную матрицу
называют матрицей узлов А. Закон Кирхгофа для токов с помощью этой матрицы
можно записать в виде:
А * i = 0, где i -
вектор, состоящий из токов ветвей.
Для описания графа схемы используют еще матрицы главных
сечений и главных контуров. Сечением называется любое минимальное множество
ветвей, при удалении которых граф распадается на 2 отдельных подграфа. Главным
называется сечение, одна из ветвей которого есть ребро, а остальные - хорды.
Главным контуром называется контур, образуемый при подключении хорды к дереву
графа. Число главных сечений равно числу ребер, т.е. L-1, а число главных
контуров - числу хорд m=(b-(L-1)). Матрицей главных сечений П называется
матрица размерностью (L-1) * b, строки которой соответствуют главным сечениям,
а столбцы - ветвям графа. Элементы матрицы a(i, j)=1, если j-я ветвь входит в
i-е сечение в соответствии с направлением ориентации для сечения; a(i, j)=-1,
если входит, но против ориентации, и a(i, j)=0, если не входит в сечение.
Закон Кирхгофа для токов можно выразить с помощью матрицы
главных сечений.
Пi = 0
Матрицей главных контуров Г называется матрица размерностью
(b-(L-1))*b, строки которой соответствуют главным контурам, а столбцы - ветвям
графа. Элемент этой матрицы a(i, j)=1, если j-я ветвь входит в i-й контур в
соответствии с направлением обхода по контуру, -1, если ветвь входит в контур
против направления обхода, и 0, если ветвь не входит в контур.
Закон Кирхгофа для напряженй выражается с помощью матрицы
главных контуров в виде:
Пи = 0
Располагая в матрицах П и Г сначала столбцы, соответствующие
ветвям-ребрам, а затем столбцы, соответствующие ветвям- хордам, можно записать:
П = [E, Пх] Г = [Гр, Е]
где Пх содержит столбцы, соответствующие хордам; матрица Гр
- столбцы, соответствующие ребрам, а Е - единичные матрицы [размерность матрицы
Е, входящей в П, (L-1)*(L-1), а входящей в Г, (b-(L-1))*(b-(L-1))].
Матрицы Гр и Пх связаны следующим соотношением:
Гр=-Пxт , где
т - знак транспонирования матрицы, или, обозначая Гр=F, получаем Пх=-Fт.
Если для расчета электрической схемы за искомые переменные
принять токи i и напряжения u ветвей, то уравнения:
Ai = 0 или Пi = 0
Гu = 0 Гu = 0
совместно с компонентами уравнений:
Fj(I,U,dI/dt,dU/dt,x,dX/dt,t)=0
составят полную систему уравнений относительно 2b
переменных.
То есть полная система в общем случае представляет собой
набор обыкновенных линейных дифференциальных уравнений.(в случае линейных схем)
Число переменных и уравнений можно уменьшить следующим
образом. Токи ребер Ip и напряжения хорд Ux можно выразить через токи хорд Ix
и напряжения ребер Up:
Ip= F * Ix Ux = -Fu
Если подставить эти уравнения в уравнение:
Fj(I,U,dI/dt,dU/dt,x,dX/dt,t)=0
то число уравнений и переменных можно уменьшить до числа
ветвей b.
Обозначения: L - число вершин
(узлов),
b - число ветвей,
p - число ребер,
m - число хорд.
Для связного графа справедливы следующие отношения:
p = L - 1 m = b - (L-1)
хорда - ребро, не вошедшее в дерево.
Оценим эффективность использования вышеописанных матриц
описания схем с точки зрения размерности, для ЭВМ это проблема экономии памяти.
Пусть имеем: число вершин (узлов) L = 500,
число ветвей b = 1000.
Оценим размеры матриц:
Инцидентности:
L * b = 500 * 1000 = 500000
Главных сечений:
(L-1) * b = p * b = 499 * 1000 = 499000
Главных контуров:
(b-(L-1)) * b = (b-p) * b = (1000-(500-1))
* 1000 = (1000-499) * 1000= 501000
Из вышеприведенных нехитрых вычислений следует, что для
описания схемы выгоднее использовать матрицу главных сечений.
2 - Эквив.схема преобразуется в программу решения линейных
дифференциальных уравнений.
Для решения таких систем необходимо организовать
иттерационный процесс, решая на каждом шаге иттераций систему линейных
уравнений.
Схема организации вычислит. процесса:
|