Студентам > Курсовые > Расчет неуправляемых и управляемых выпрямителей при различных режимах работы
Расчет неуправляемых и управляемых выпрямителей при различных режимах работыСтраница: 1/6
СОДЕРЖАНИЕ
Введение …………………………………………………………………. 4
1. Расчет выпрямителя на активную промышленную нагрузку …… 5
1.1 Выбор рациональной схемы выпрямителя …………………… . 5
1.2 Расчет качественных показателей выпрямителя ………………. 6
2. Расчет выпрямителя на активно-индуктивную нагрузку
электрических аппаратов ……………………………………………… 8
3. Особенности работы и расчет выпрямителя на емкостной
накопитель энергии ……………………………………………………. 11
4. Расчет выпрямителя с учетом явления коммутации ……………… 14
5. Расчет управляемого выпрямителя в режиме стабилизации
выходного напряжения ……………………………………………… . 16
6. Определение энергетических показателей выпрямителя при
различных характерах нагрузки ……………………………………… 20
7. Схематическое моделирование выпрямителя с помощью
программных средств ………………………………………………… 26
8. Разработка принципиальной схемы управляемого выпрямителя
для электропривода постоянного тока ……………………………… 30
Приложение А ……………………………………………………… 33
Приложение Б ………………………………………………………… . 34
Приложение В ………………………………………………………… 35
Приложение Г ………………………………………………………… . 36
Приложение Д ………………………………………………………… 37
Заключение ……………………………………………………………… 38
Список литературы …………………………………………………… 39
Введение
Энергия, содержащаяся в природных источниках (каменный уголь, вода и т.п.) является первичной, а устройства, преобразующие её в энергию электрическую, называются источниками первичного электропитания (ИПЭ). Непосредственное использование ИПЭ затруднено тем, что их выходное напряжение в большинстве случаев стандартное переменное. Между тем почти половина электроэнергии потребляемой в нашей стране потребляется в виде постоянного напряжения различных значений или тока нестандартной частоты. Потребителями могут служить: электропривод (активно-индуктивная нагрузка), лампы, нагревательные устройства (активная нагрузка), сварочные аппараты, технологические установки (активно-емкостная нагрузка) и т.д.
Питание подобных потребителей осуществляется от источников вторичного электропитания (ИВЭ). ИВЭ – это устройства, предназначенные для преобразования электроэнергии ИПЭ до вида и качества, обеспечивающих нормальное функционирование питаемых им потребителей. В состав ИВЭ, в соответствии с рисунком 1, кроме самого устройства ИВЭ могут входить дополнительные устройства.
В данной работе подлежит разработке и расчёту полная принципиальная схема, а также моделирование электрических режимов силовой части электропитающего устройства с помощью программного пакета EWB.
1. Расчет выпрямителя на активную промышленную нагрузку
Рассчитать неуправляемый выпрямитель с активной нагрузкой (без потери напряжения в фазах выпрямителя), если известны среднее значение выпрямленного напряжения и тока: U0 = 60 В, I0 = 30 А.
Требуется:
1. Определить рациональный тип схемы выпрямителя. Вычертить принципиальную и эквивалентную схемы этого выпрямителя.
2. Вычислить частоту fП(1) и коэффициент пульсаций kП(1) выпрямленного напряжения u0 по основной гармонике; величину сопротивления R0 нагрузки и её мощность P0, среднее Iпр.v и эффективное Iэфф.v значения прямого тока вентиля, действующие значения фазных ЭДС E2 и тока I2 вентильных обмоток трансформатора.
3. Вычертить, соблюдая масштаб по оси ординат и по оси абсцисс (-π/2≤ωt≤5π/2), кривые мгновенных значений: фазных ЭДС e2, выпрямленного напряжения u0 (отметить уровень U0) и обратного напряжения uобр.v на вентиле (отметить уровень Umax.v), а также тока i2 вентильной обмотки трансформатора (отметить уровень I2) и прямого тока iпр.v вентиля (отметить уровни Iпр.v и Iэфф.v).
1.1 Выбор рациональной схемы выпрямителя
Для определения типа схемы выпрямителя рассчитаем мощность, потребляемую в нагрузке:
P0 = U0·I0 , (1.1)
P0 = 60·30 = 1800 Вт
В результате наиболее рациональным типом выбираем однофазную мостовую схему выпрямителя, в соответствии с рисунком 1.1.
Рисунок 1.1 - Принципиальная схема однофазного мостового выпрямителя
Учитывая, что в фазах нет потерь, то пороговое напряжение, динамическое сопротивление прямой ветви ВАХ диода, а также индуктивность рассеяния и активное сопротивление обмоток трансформатора принимаем равным нулю: Uпор.v = 0, Rg.v = 0, Ls = 0, RT + p Rg.v. Тогда принципиальная схема примет вид в соответствии с рисунком 1.2:
Рисунок 1.2 - Эквивалентная схема однофазного мостового
выпрямителя с учетом допущений
1.2 Расчет качественных показателей выпрямителя
Вычисляем частоту пульсаций fП(1) по формуле:
fП(1) = m2·p·f1 , (1.2)
где m2 – число фаз вторичной обмотки преобразовательного
трансформатора, m2 = 1;
p – тактность выпрямителя, p = 2;
f1 – частота питающей сети, f1 = 50 Гц.
fП(1) = 1·2·50 = 100 Гц.
Вычисляем коэффициент пульсаций kП(1) по формуле:
kП(1) = , (1.3)
kП(1) = 0,667.
Вычисляем величину сопротивления R0 нагрузки по закону Ома:
R0 = , (1.4)
R0 = 60 / 30 = 2 Ом.
Вычисляем среднее значение прямого тока Iср.v вентиля по формуле [1]:
Iср.v = , (1.5)
Iср.v = 30 / 1·2 = 15 А.
Вычисляем эффективное значение прямого тока вентиля Iэфф.v по формуле [1]:
Iэфф.v = kф.v ·Iср.v , (1.6)
где kф.v – коэффициент формы кривой тока вентиля,
kф.v = 1,57 - принимаем в зависимости от схемы
выпрямителя, [1,18].
Iэфф.v = 1,57 ·15 = 23,55 А.
Вычисляем действующее значение фазных ЭДС E2 и тока I2 по формулам [1,18]:
E2 = 1,11·U0 , (1.7)
I2 = 1,11·I0, (1.8)
E2 = 1,11·60 = 66,61 В, I2 = 1,11·30 = 33,3 А.
Вычисляем максимальное обратное напряжение на вентиле по формуле [1,18]:
Umax.v = , (1.8)
Umax.v = = 94,2 В.
Графики зависимостей e2(wt), u0(wt), i2(wt), iVD1(wt) приведены в приложении А.
2. Расчет выпрямителя на активно-индуктивную нагрузку электрических аппаратов
Схема выпрямителя (без потерь напряжения в фазах выпрямителя), значение фазных ЭДС E2 и величина активного сопротивления R0 нагрузки сохранились такими же, как и в пункте 1.2. Индуктивное сопротивление нагрузки XL = m2·p·ω·L0 на частоте m2·p·ω = m2·p·2π·f1 пульсаций основной гармоники в n = 3 раза больше величины сопротивления R0.
|