Студентам > Рефераты > Выходные устройства управления выпрямительно-инверторными преобразователями
Выходные устройства управления выпрямительно-инверторными преобразователямиСтраница: 2/3
Поэтому эти схемы имеют одинаковые напряжения питания, согласованы по входным и выходным сопротивлениям и по уровням сигналов. Наибольшее применение в автоматических устройствах и в устройствах автоматического регулирования и управления нашли дифференциальные усилители, усилители низкой частоты и операционные усилители.
Дифференциальные усилители. В тех случаях, когда необходимо сравнить несколько входных сигналов, получив на выходе разностный сигнал, используют дифференциальные усилители. Дифференциальный усилитель (рис. 1) повторителя содержит два эмиттерных и управляемый источник тока .Если на входы 1 и 7 подать два напряжения, то их разность усиливается и между выводами 8 и 9 появляется напряжение, линейно зависящее от разности напряжений на входах. При подаче на вход одинаковых напряжений разность между ними будет равна нулю и, следовательно, на выходе сигнал тоже будет равен нулю независимо от коэффициента усиления схемы.
Усилители низкой частоты.УНЧ применяют как для усиления звуковых частот, так и для усиления различного рода сигналов. Выполняются усилители с выходной мощностью от сотен милливатт до 20 Вт и выше. УНЧ характеризуются следующими параметрами:
диапазон рабочих частот от 1 Гц до 100 кГц; коэффициент усиления ky = 300— 500; входное сопротивление от 10кОм до 10МОм; выходное сопротивление 100—5000 Ом и потребляемая мощность 10— 100 мВт. Схема простейшего предварительного усилителя низкой частоты представлена на рис. 2. Она содержит двухкаскадный входной усилитель на транзисторах VI и V2 с внешними нагрузками и цепями смещения (выводы 8—10) и двухкаскадный выходной усилитель на транзисторах V3 и V5 с внешней обратной связью через транзистор V4 (вывод 4). Необходимое смещение на транзисторе обеспечивают диоды V6—V9. В современных усилителях широкое применение получили р—п—р-структуры, имеющие при малых токах смещения достаточно высокий коэффициент усиления (30—80).
Операционные усилители. Раньше операционные усилители использовали в аналоговых ЭВМ для выполнения чисто математических операций, таких, как суммирование, вычитание, дифференцирование и интегрирование. В настоящее время операционные усилители благодаря их многофункциональности нашли широкое применение в системах автоматического регулирования и управления подвижным составом. Основными достоинствами операционного усилителя являются высокий коэффициент усиления (400— 50 000 и выше) и точная регулировка усиления с помощью внешних резисторов и конденсаторов (рис 3) . Операционный усилитель, схема которого приведена на рис. 3, состоит из входного дифференциального усилителя, промежуточного и выходного каскадов. Для обеспечения большого входного сопротивления и малого входного тока транзисторы VI и V2 первого каскада работают при очень малых токах коллектора—около 20 мкА. Через транзистор V8 подается питание на входной каскад. Второй каскад состоит из двух групп транзисторов V3, V5 и V4, V6. Такое включение способствует лучшему согласованию между первым и вторым каскадами при максимальном усилении. Транзистор V9 предназначен для согласования второго каскада с третьим, а вместе с резистором R11 и транзистором VI 0 служит для изменения уровня постоянного напряжения. Для создания обратной связи в усилителе служит резистор R13. Выходной каскад усилителя составляют транзисторы V12 и VI3. Конструктивно микросхема выполнена в круглом металлостеклянном корпусе. Но более мощные схемы выполняют в прямоугольных или пластмассовых корпусах с теплоотводами.
Принцип действия и схемы блокинг-генераторов.
Общие сведения. Блокинг-генераторы — это однокаскадные усилители с трансформаторной положительной обратной связью. Они используются для генерирования мощных импульсов почти прямоугольной формы с большой скважностью. Обратная связь в схеме осуществляется с помощью импульсного трансформатора. Существует два вида блокинг-генераторов: ждущие и самовозбуждающиеся (рис. 1). Обратная связь осуществляется обмоткой Wб, включенной в цепь базы транзистора. В эту же цепь включены формирующий конденсатор Сб и резистор смещения Rб. Нагрузка Кн подключена последовательно с сопротивлением Rк, либо к обмотке Wн, как показано на рис. 1, а. В последнем случае сопротивление Rк можно не подключать.
Работа блокинг-генератора в самовозбуждающемся режиме. При подключении блокинг-генератора к источнику питания в цепи транзистора появится ток jк. В обмотке Wб наводится э.д.с., которая передается на базу транзистора и понижает ее потенциал (рис. 1, д). Это приводит к росту тока базы (рис. 1, е) и к дальнейшему росту тока коллектора. Транзистор открывается полностью и переходит в режим насыщения.
В интервале t1 — t2 происходит формирование переднего фронта импульса tф. В интервале t2 — t3 происходит рассасывание неосновных носителей в транзисторе, накопленных в базе, которое обусловливает процесс заряда конденсатора С током базы. Длительность процесса заряда конденсатора определяет длительность вершины импульса. В интервале t2 — t4 происходит полный заряд конденсатора и к базе транзистора подводится положительное напряжение, которое и выводит транзистор из режима насыщения. При этом начинает спадать ток базы, вызывая уменьшение тока коллектора. Уменьшение тока jk приводит к возникновению э.д.с. в обмотке Wб положительной полярности, которая еще больше способствует запиранию транзистора. К моменту t4 ток jk достигает нуля, транзистор закры-
вается полностью, а потенциал на коллекторе достигает напряжения источника — Ек. На этом процесс формирования заднего фронта импульса заканчивается.
После полного запирания транзистора в интервале t4 — t5 начинается разряд конденсатора через резистор Rб и обмотку Wб . По мере разряда конденсатора напряжение на базе транзистора снижается и к моменту t5 , достигает такого значения, при котором транзистор отпирается. При этом происходит повторение лавинообразного роста тока в цепях базы и коллектора. Длительность выходных импульсов tu зависит от скорости заряда конденсатора Сб , которая определяется постоянной времени 3 =RбэСб . Период повторения импульсов Т определяется временем разряда конденсатора С через резистор Rб, при запертом транзисторе, т. е. постоянной времени разряда p=PбCб . Длительность импульсов регулируют изменением емкости конденсатора.
Работа блокинг-генератора в ждущем режиме. Блокинг-генератор в ждущем режиме используется для формирования выходного сигнала в том случае, когда на вход подается запускающий сигнал. При отсутствии запускающих импульсов схема блокинг-генератора находится в исходном состоянии и выходных импульсов не генерирует. В качестве блокинг-генератора, работающего в ждущем режиме, можно использовать ранее рассмотренный, дополнив его источником смещения Есм, подключив к резистору Rб. Но так как в схеме ждущего блокинг-генератора не требуется определять длительность паузы между импульсами, а необходима только длительность импульса, то конденсатор С и резистор Rб в схеме не нужны. До поступления входного сигнала на обмотку Wвх (рис. 2) транзистор заперт напряжением смещения, которое подается на базу транзистора. При подаче входного импульса Uвх на обмотку импульсного трансформатора в остальных обмотках наводится э. д. с., которая способствует открытию транзистора, а следовательно, и появлению выходного импульса. После прекращения подачи входного импульса происходит перемагничивание сердечника трансформатора и уменьшение тока базы. Когда ток базы станет равным нулю, транзистор закроется и схема примет исходное положение до подачи следующего импульса.
|