Студентам > Рефераты > Микродисплеи
МикродисплеиСтраница: 2/9
Хотя существует мнение, что чем выше разрешение дисплея, тем лучше, на самом деле, согласно прогнозам ведущих специалистов, даже в 2003 г. более 50% проекционных устройств будут использовать микродисплеи не выше XGA формата.
В зависимости от архитектуры построения устройств и систем на основе МД и областей их применения можно выделить 2 большие группы, а именно, видеопроекционные устройства и системы группового типа, в которых изображение с МД методами прямой или обратной проекции переносится на экран больших размеров и считывается наблюдателем или группой наблюдателей с достаточно большого расстояния, желательного большего, чем 5-кратная высота экрана (рис. 3а, б). В виртуальных устройствах и системах персонального типа (virtual microdisplays, NTE = Near-to-the-Eye Displays) изображение МД увеличивается оптической системой и проецируется непосредственно на сетчатку глаза наблюдателя. Изображение, формируемое во втором случае, находится от глаза дальше, чем сам объект ("виртуальное" изображение) и отличается от "реального", наблюдаемого на экране монитора или телевизора (рис. 3в).
Как видеопроекционные, так и виртуальные устройства и системы должны строиться с учетом особенностей восприятия изображения человеком, т.е. характеризоваться световыми (фотометрическими) параметрами, а не энергетическими, как это часто практикуется в зарубежных публикациях. Основные световые параметры - световой поток, сила света, светимость, яркость и освещенность - применяются только в видимом диапазоне спектра и учитывают различную чувствительность человеческого глаза как приемника излучения. Как известно, она максимальна в зеленой области спектра при l = 555 нм и падает практически до нуля на границах видимого диапазона при l = 380 и 780 нм. Для точечного источника света, размеры которого значительно меньше расстояния от него до точки наблюдения, световой поток Ф в люменах определяется мощностью излучения в заданном телесном угле W, измеряемом в стерадианах. Сила света I в данном направлении, измеряемая в канделах, равна отношению светового потока к телесному углу. Если источник света излучает равномерно во все стороны, то сила света определится как I = Ф/4p. Для неточечных источников света вводятся такие параметры как светимость и яркость, которые связаны с площадью излучающей поверхности и измеряются соответственно в Лм/м2 и Кд/м2 (в зарубежных публикациях часто используют единицу измерения фут-ламберт fL, 1 fL = 3,4 Кд/м2). Для комфортного наблюдения яркость экрана должна быть в пределах 30:300 Кд/м2 для кинотеатров и офисов.
Для проекционных устройств важно также знать освещенность в заданной точке экрана, которая измеряется в люксах (1 лк = 1 Лм/м2) и определяется как отношение светового потока к площади освещаемой поверхности. Хотя размерность единицы освещенности и светимости одинаковы, физическая сущность этих параметров совершенно различна.
Несмотря на то, что прямых методов измерения величины светового потока на экране не существует, она может быть легко рассчитана из результатов измерения освещенности экрана, например, люксметром, помещенном вместо экрана. Признанный в настоящее время ANSI-стандарт предполагает измерение в 9 различных точках экрана и вычисление средней величины, которая, как правило, оказывается ниже, чем для одной центральной точки. Для наблюдателя важен также контраст изображения, определяемый отношением освещенности белой и черной точки. При контрасте 3:1 считываются цифры и буквы, контраст 10:1 обеспечивает комфортное считывание информации, а 100:1 - не требует дополнительной адаптации человеческого глаза. Как правило, контраст изображения для фронтальных проекторов значительно больше зависит от внешней засветки, чем для проекторов с обратной проекцией.
Глаз человека в условиях комфортного наблюдения способен разрешать детали изображения с угловыми размерами около 1/60 градуса или 0,4 мрад. В таблице 3 приведены основные параметры изображений различного типа, наблюдаемых в нормальных условиях.
Таблица 3. Основные параметры изображений разного типа Тип изображения |
Расстояние до объекта | Размер изображения по горизонтали | Разрешение | Угол/элемент отобр. (мрад) |
Страница текста | 25 см | 20 см | 80 линий на см | 1,71 |
ЭЛТ монитор | 50 см | 25 см | 0,26 мм | 1,78 |
Проекционный экран | 2,5 м | 1,2 м | 1024 линий | 1,91 |
Микродисплей | 25 см | 10 мм | 800 лин., 12 мкм | 0,16 |
Из табл. 3 видно, что если для первых трех типов изображений угол разрешения находится в пределах 1,7:1,9 мрад, что вполне приемлемо, то в случае микродисплея изображение не "читается" и должно быть увеличено оптикой, как минимум, в 10 раз. Следует отметить, что улучшить "читаемость" за счет приближения МД к глазу не удается, т.к. минимально возможное фокусное расстояние глаза составляет порядка 25 см. Это означает, что фокальное расстояние линзовой системы 10Х, располагаемой непосредственно вблизи глаза, должно быть не менее 25 мм, а ее диаметр - не менее 20 мм.
Важное значение имеет и поле зрения, т.е. угол наблюдения всего изображения по диагонали, напрямую зависящий от разрешения глаза, умноженного на количество ЭО по диагонали. Так, например, поле зрения для МД QVGA-формата (320 x 240 ЭО) составляет 13°, для МД VGA - (640 x 480 ЭО), SVGA - (800 x 600) и XGA - (1024 x 768) форматов - соответственно 26°, 34° и 43°. Слишком малое значение поля зрения означает недостаточное увеличение изображения, а слишком большое приводит к необходимости постоянного движения и перефокусировки глаза, особенно в условиях бинокулярного наблюдения. Если возможности адаптации глаза ограничены, то часть изображения, особенно по углам, будет не в фокусе, что у большинства наблюдателей вызывает симптомы усталости типа напряжения в глазах (у 7 из 10 испытуемых), потускнения картинки (у 5 испытуемых), появление головной боли (у 3 испытуемых). Кроме того, при долговременном наблюдении могут проявляться психологические эффекты, известные под названием синдрома софита (включающие в себя сонливость, повышенную возбудимость или хроническую усталость), клаустрофобию и др.
|