_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Основы дискретизации и восстановления сигналов по теореме Котельникова

Основы дискретизации и восстановления сигналов по теореме Котельникова

Страница: 1/2

1. Цель работы

Основной целью лабораторной работы является изучение основ дискретизации и восстановления сигналов по теореме Котельникова. Новая (очередная) базисная система {sin(x)/x} используется здесь для обработки не только видео-, но и радиосигналов.

2. Подготовка к лабораторной работе

2.1. Теорема Котельникова

Теорема Котельникова (теорема отсчетов) имеют следующею формулировку: если наивысшая частота в спектре функции S(t) меньше, чем fm, то функция S(t) полностью определяется последовательностью своих значений в моменты, отстоящие друг от друга не более чем на ½fm секунд.

В соответствии с этой теоремой сигнал S(t), ограниченный по спектру наивысшей частотой wm=2pfm, можно представить рядом

. (1)

Этот ряд называется рядом Котельникова. В этом выражении ½fm = Dt обозначает интервал между двумя отсчетными точками на оси времени, а S(n/2fm) = S(nDt) – выборки функции S(t) в моменты времени t=nDt.

Исходя из (1), теорема Котельникова формулируется так: произвольный сигнал, спектр которого не содержит частот выше fm , может быть полностью восстановлен, если известны отсчетные значения этого сигнала, взятые через равные промежутки Dt = ½fm.

Рисунок 2.1. - Структурная схема синтезатора

В приведенном на рисунке 2.1 алгоритме, роль базисных функций jn(t) выполняют функции отсчетов:

.

2.2. Расчет спектра Котельникова

Спектром Котельникова называется последовательность выборок S(nDt) на временной оси. Рассчитаем спектра Котельникова для заданного видеосигнала прямоугольной формы, с длительностью tu = 0,14 мс.

Интервал между двумя отсчетными точками на оси времени определяется соотношением Dt=½fm. В этом выражении граничную частоту спектра fm можно найти как fm=1/tu. Таким образом, получаем Dt:

Dt=½fm=0.075мс

Таким образом, мы получаем спектр Котельникова – дискретизованный сигнал, который включает в себя две составляющих. Континуальный и дискретизованный сигналы изображены на рисунке.2.2.

Рисунок 2.2. - Континуальный и дискретизованный сигналы.

3. Работа в компьютерной лаборатории и обработка результатов

3.1. Прямоугольные импульсы

Для прямоугольного сигнала устанавливаем длительность импульса tu=0,14мс, число отсчетов N=8 (на периоде) и частоту среза ФНЧ Fcp=4 кГц.

Рассмотрим амплитудно-частотную диаграмму (на рисунке 3.1). Спектр дискретизованного сигнала имеет периодический характер, подобно лепесткам в групповом спектре прямоугольного сигнала, только здесь амплитуда этих лепестков не убывает.

Спектр синтезированного сигнала содержит только один лепесток. Граничная частота в этом спектре определяется частотой среза ФНЧ фильтра, которая в данном случае равна 4 кГц. Спектральные составляющие, соответствующие этой и последующим частотам, не входят в ряд Котельникова и не участвуют в процессе синтеза сигнала, так как они отбрасываются фильтром. Следовательно, старшая составляющая дискретного линейчатого спектра соответствует частоте 3 кГц. Погрешность синтеза сигнала составляет 18,7%.

При изменении длительности дискретзирующих импульсов (то есть, когда они отличны от нуля), периодический спектр станет квазипериодическим, так как при этом включается множитель sin(x)/x.

Рисунок 3.1. - Исследование прямоугольного импульса

Далее, увеличим N и Fcp в 2 раза, то есть N =16 и Fcp =8 кГц. ФНЧ фильтр при этом начинает пропускать больше высокочастотных составляющих в ряд Котель-никова, поэтому колебания в восстанавливаемом сигнале становятся чаще. В частотном спектре восстанавливаемого сигнала появится еще один лепесток (толстые линии на спектре, рисунок 3.1), в который входят новые высокочастотные составляющие. Этот лепесток и совершает "вырез" сигнала в пике (см. рисунок 3.1). При этом абсолютная разность сигналов DS=|S(t)-SS(t)| уменьшается, что приводит к снижению погрешности. Погрешность синтеза в этом случае составляет 16,6%.

3.2. Импульсы треугольной формы

Рисунок 3.2. - Исследование треугольных импульсов

Выставляем в программе заданные параметры: tu=0,31 мс, N1=32, Fcp= N/2 = 16 кГц.

По аналогии с предыдущим пунктом, спектр дискретизованного сигнала имеет периодический характер. Увеличим число отсчетов N=40 и Fcp= N/2 = 20 кГц. Благодаря разнесению парциальных спектров увеличится граничная частота fm, лучше станет просматриваться форма спектра исходного треугольного импульса и улучшится качество синтеза. Результат исследования импульсов треугольной формы показан на рисунке 3.2. Иными словами, при увеличении числа отсчетов

N1 -> N2, сигнал лучше восстанавливается, уменьшается погрешность восстановления: и при

3.3. Пилообразные импульсы

Выставим максимально возможную длительность импульса tu= 1 мс. Наблюдения проводились при N=8, Fcp=4 кГц и при N=32, Fcp=16 кГц. Как и в предыдущих колебаниях, в пилообразном импульсе наблюдается периодический характер спектра (см. рис.3.3). Кроме того, в этом типе сигнала наблюдается выброс - дефект Гиббса. Аналогично гармоническому синтезу, этот выброс появляется в точках разрыва исходного сигнала. Непрерывные функции (в нашем случае sin(x)/x) не могут восстановить подобный сигнал с большой точностью.

Рисунок 3.3. - Исследование пилообразных импульсов

Найдем аналитическое выражение для спектра напряжения пилообразной формы. Исходный сигнал выглядит как S(t)=E(t/tu). Требуется найти S(nDt), то есть для t=nDt:

, где tu=NDt, а n - номер отсчета.

На основе сравнений с экспериментальными и теоретическими значениями S(t), можно сделать вывод о справедливости этой формулы.

3.4. Синусоидальное колебание

Установим частоту среза Fcp=Fcp min =1 кГц и минимальное число отсчетов на период N=Nmin=2. При этом интервал между отсчетными точками находится из соотношения ½fm = Dt, где частоте fm соответствует частота среза Fcp ФНЧ фильтра. Отсюда получаем Dt=0,5 мс. Отсчеты приходятся на моменты времени t=0 и t=Т/2=0,5. В этих точках сигнал S(t)=sin(x) равен нулю, поэтому ни дискретизации, ни восстановления сигнала не произойдет. При изменении фазы от p/6 до p/2, мы получим сигнал S(t)=cos(x). В точках t=0 и t=0,5 мс эта функция равна 1 (отлична от нуля), поэтому происходит восстановление cos(x).



12