Студентам > Курсовые > Матричные фотоприемники
Матричные фотоприемникиСтраница: 5/7
4.3Параметры фоторезисторов
Основные параметры фоторезисторов:
Рабочее напряжение Uр – постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.
Максимально допустимое напряжение фоторезистора Umax – максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.
Темновое сопротивление Rт – сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.
Световое сопротивление Rс – сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.
Кратность изменения сопротивления KR – отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).
Допустимая мощность рассеяния – мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.
Общий ток фоторезистора – ток, состоящий из темнового тока и фототока.
Фототок – ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.
Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм · В)
К0 = Iф / (ФU), (7)
где Iф – фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф – падающий световой поток, лм; U – напряжение, приложенное к фоторезистору, В.
Интегральная чувствительность – произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0Umax.
Постоянная времени tф – время, в течение которого фототок изменяется на 63%, т. е. в e раз.
Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.
При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону
iф = Iф (1 – e – t / t); iф = Iф e – t / t, (8)
где Iф – стационарное значение фототока при освещении.
По кривым спада фототока во времени можно определить время жизни t неравновесных носителей.
4.4 Изготовление фоторезисторов
В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.
4.5 Применение фоторезисторов
В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике
5.1 Устройство и основные узлы фотоэлектронного умножителя
Фотоэлектронный умножитель (ФЭУ) . очень распространенный и во
многих случаях незаменимый детектор излучения. Он позволяет регистрировать и
предельно слабые и довольно интенсивные потоки. От единиц до 10101012
фотонов в секунду. Постоянная времени . порядка 10–810–10 с, т.е. допускает
весьма высокие частоты модуляции. Может быть размещен на воздухе и в
вакууме. На выходе дает легко измеримый сигнал. Все это с лихвой компенсирует
неудобства, связанные с необходимостью использования высоковольтных блоков питания (0.52.5 кВ) и довольно большими габаритами ФЭУ.
Устройство и основные узлы фотоэлектронного умножителя
Схематичное изображение
устройства ФЭУ.
Пояснения в тексте.
Схема ФЭУ приведена на рис. (этот и некоторые другие рисунки
воспроизведены из [1]). Фотоэлектронный умножитель состоит из фотокатода 1,
катодной камеры 1–3, динодной системы 3–14 и анодного узла 14–16,
размещенных внутри вакуумного объема. Световой поток поглощается
фотокатодом, эмиттирующим в вакуум электроны. В электростатическом поле,
создаваемом электродами катодной камеры, электроны ускоряются и
фокусируются на первый динод (3). Ускоренный первичный электрон способен
выбить с поверхности несколько вторичных, медленных1. Умноженные на первом
диноде, вторичные электроны ускоряются и фокусируются на второй динод.
Далее этот процесс повторяется на всех каскадах и с последнего динода
усиленный электронный поток собирается анодом. Каждый динод работает и
анодом, собирая электроны с предыдущего, и катодом, эмиттируя усиленный
поток. Отсюда и название . динод.
Фотокатод
Конструкция каждого ФЭУ должна обеспечить оптимальные условия
попадания светового излучения на фотокатод (оптический вход ФЭУ), поэтому
применяются различные геометрические расположения фотокатода относительно
оси вакуумной колбы и различные материалы входных окон.
Для регистрации несфокусированного излучения используется торцевой
оптический вход. . В этом случае ПОЛУПРОЗРАЧНЫЙ
ФОТОКАТОД, работающий .на просвет. (излучение попадает на фотокатод со
стороны подложки), формируется при изготовлении в виде тонкой пленки
непосредственно на плоском входном окне. Диаметр фотокатода может
превышать 250 мм, но наиболее широко применяются ФЭУ с диаметрами рабочей
площади от 5 до 50 мм.
Сфокусированные световые пучки можно регистрировать и с фотокатодом
малой площади, в том числе . работающим .на отражение. (излучение попадает
на фотокатод со стороны вакуума). Входное окно при этом располагается или на
торце, или на боковой стенке колбы.
В этом случае мы имеем МАССИВНЫЙ ФОТОКАТОД, формируемый на
металлической, т.е. хорошо проводящей поверхности. Он имеет существенные
преимущества перед полупрозрачным и по эмиссионным свойствам и, главное, по
|