_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Матричные фотоприемники

Матричные фотоприемники

Страница: 5/7

4.3Параметры фоторезисторов

Основные параметры фоторезисторов:

Рабочее напряжение Uр – постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.

Максимально допустимое напряжение фоторезистора Umax – максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

Темновое сопротивление Rт – сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.

Световое сопротивление Rс – сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

Кратность изменения сопротивления KR – отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния ­– мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора – ток, состоящий из темнового тока и фототока.

Фототок – ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм · В)

К0 = Iф / (ФU), (7)

где Iф – фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф – падающий световой поток, лм; U – напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность – произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0Umax.

Постоянная времени tф – время, в течение которого фототок изменяется на 63%, т. е. в e раз.

Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону

iф = Iф (1 – e – t / t); iф = Iф e – t / t, (8)

где Iф – стационарное значение фототока при освещении.

По кривым спада фототока во времени можно определить время жизни t неравновесных носителей.

4.4 Изготовление фоторезисторов

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.

4.5 Применение фоторезисторов

В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике

5.1 Устройство и основные узлы фотоэлектронного умножителя

Фотоэлектронный умножитель (ФЭУ) . очень распространенный и во

многих случаях незаменимый детектор излучения. Он позволяет регистрировать и

предельно слабые и довольно интенсивные потоки. От единиц до 10101012

фотонов в секунду. Постоянная времени . порядка 10–810–10 с, т.е. допускает

весьма высокие частоты модуляции. Может быть размещен на воздухе и в

вакууме. На выходе дает легко измеримый сигнал. Все это с лихвой компенсирует

неудобства, связанные с необходимостью использования высоковольтных блоков питания (0.52.5 кВ) и довольно большими габаритами ФЭУ.

Устройство и основные узлы фотоэлектронного умножителя

Схематичное изображение

устройства ФЭУ.

Пояснения в тексте.

Схема ФЭУ приведена на рис. (этот и некоторые другие рисунки

воспроизведены из [1]). Фотоэлектронный умножитель состоит из фотокатода 1,

катодной камеры 1–3, динодной системы 3–14 и анодного узла 14–16,

размещенных внутри вакуумного объема. Световой поток поглощается

фотокатодом, эмиттирующим в вакуум электроны. В электростатическом поле,

создаваемом электродами катодной камеры, электроны ускоряются и

фокусируются на первый динод (3). Ускоренный первичный электрон способен

выбить с поверхности несколько вторичных, медленных1. Умноженные на первом

диноде, вторичные электроны ускоряются и фокусируются на второй динод.

Далее этот процесс повторяется на всех каскадах и с последнего динода

усиленный электронный поток собирается анодом. Каждый динод работает и

анодом, собирая электроны с предыдущего, и катодом, эмиттируя усиленный

поток. Отсюда и название . динод.

Фотокатод

Конструкция каждого ФЭУ должна обеспечить оптимальные условия

попадания светового излучения на фотокатод (оптический вход ФЭУ), поэтому

применяются различные геометрические расположения фотокатода относительно

оси вакуумной колбы и различные материалы входных окон.

Для регистрации несфокусированного излучения используется торцевой

оптический вход. . В этом случае ПОЛУПРОЗРАЧНЫЙ

ФОТОКАТОД, работающий .на просвет. (излучение попадает на фотокатод со

стороны подложки), формируется при изготовлении в виде тонкой пленки

непосредственно на плоском входном окне. Диаметр фотокатода может

превышать 250 мм, но наиболее широко применяются ФЭУ с диаметрами рабочей

площади от 5 до 50 мм.

Сфокусированные световые пучки можно регистрировать и с фотокатодом

малой площади, в том числе . работающим .на отражение. (излучение попадает

на фотокатод со стороны вакуума). Входное окно при этом располагается или на

торце, или на боковой стенке колбы.

В этом случае мы имеем МАССИВНЫЙ ФОТОКАТОД, формируемый на

металлической, т.е. хорошо проводящей поверхности. Он имеет существенные

преимущества перед полупрозрачным и по эмиссионным свойствам и, главное, по