Студентам > Курсовые > Старая пластинка: Что такое цифровой звук и реставрация звука с помощью цифровой обработки
Старая пластинка: Что такое цифровой звук и реставрация звука с помощью цифровой обработкиСтраница: 1/10
Содержание
1.Введение……………………………………………………………… 3
2. Часть первая, теоретическая…… ……………………………… 3
А. Теория цифрового звука……………………………….……3
Б. Оцифровка звука и его хранение на цифровом носителе.7
В. Как сохранить оцифрованный звук? 11 Г. Преимущества и недостатки цифрового звука………….14 Д. К вопросу об обработке звука…………… ……………….17 Е. Аппаратура……………………………………… …………18
Ж. Программное обеспечение………………………….…… 22
3.Часть вторая: больше практическая…………… …………………25
1. Подключение проигрывателя к компьютеру… ……….25
2. Настройка возможностей звуковой карты…… ……… 26
3. Реставрация……………………………………….…………26
4. Подготовка файлов…………………………………………32
5. Разделение файла wave на отдельные композиции 32
6. Перспективы и проблематика……………………………33
7. Глоссарий терминов……………………………………….34
1.Введение
В последнее время возможности мультимедийного оборудования претерпели значительный рост, и этой области уделяется достаточное количество внимания, но все же рядовой пользователь никак не может составить себе четкого представления о том, какие возможности скрывает его железный друг в области воспроизведения звука, писка, шумов, бинаруальных волн и т.д. Все ограничивается воспроизведением криков и взрывов в играх и фильмах (благо технический прогресс докатился уже до такого уровня) и прослушивания домашней фонотеки (или уже пора придумать другое название, что-нибудь типа «цифротеки»?).
Попробуем в данном труде разобраться в основных аспектах данной проблемы. Поговорим немного об анатомии, теории цифрового звука и что можно извлечь из старой виниловой пластинки и аудиокассеты.
Что именно мы знаем о звуковых возможностях компьютера, кроме того, что в нашем домашнем компьютере установлена звуковая плата и две колонки? К сожалению, вероятно из-за недостаточности литературы или по каким-либо другим причинам, но пользователь, чаще всего, не знаком ни с чем, кроме встроенного в Windows микшера аудио входов/выходов и Recorder’а. Для того чтобы узнать что же умеет компьютер в области звука, нужно только поинтересоваться и перед вами откроются возможности, о которых вы, может быть, даже не догадывались. И все это не так сложно, как может показаться на первый взгляд.
2.Часть первая: больше теоретическая.
Все процессы записи, обработки и воспроизведения звука так или иначе работают на один орган, которым мы воспринимаем звуки - ухо. Две штуки :). Без понимания того, что мы слышим, что нам важно, а что нет, в чем причина тех или иных музыкальных закономерностей - без этих и других мелочей невозможно спроектировать хорошую аудио аппаратуру, нельзя эффективно сжать или обработать звук. То, что здесь описано - лишь самые основы.
Снаружи мы видим так называемое внешнее ухо. Ничего особенного нас тут не интересует. Затем идет канал - примерно 0.5 см в диаметре и около 3 см в длину. Далее - барабанная перепонка, к которой присоединены кости - среднее ухо. Эти косточки передают вибрацию барабанной перепонки далее - на другую перепонку, во внутреннее ухо - трубку с жидкостью, около 0.2 мм диаметром и еще целых 3-4 см длинной, закрученная как улитка. Смысл наличия среднего уха в том, что колебания воздуха слишком слабы, чтобы напрямую колебать жидкость, и среднее ухо вместе с барабанной перепонкой и перепонкой внутреннего уха составляют гидравлический усилитель - площадь барабанной перепонки во много раз больше перепонки внутреннего уха, поэтому давление (которое равно F/S) усиливается в десятки раз.
Во внутреннем ухе по всей его длине натянута некая штука, напоминающая струну - еще одна вытянутая мембрана, жесткая к началу уха и мягкая к концу. Определенный участок этой мембраны колеблется в своём диапазоне, низкие частоты - в мягком участке ближе к концу, самые высокие - в самом начале. Вдоль этой мембраны расположены нервы, которые воспринимают колебания и передают их в мозг, используя два принципа:
Первый - ударный принцип. Поскольку нервы еще способны передавать колебания (бинарные импульсы) с частотой до 400-450 Гц, именно этот принцип влоб используется в области низкочастотного слуха. Там сложно иначе - колебания мембраны слишком сильны и затрагивают слишком много нервов. Ударный принцип немного расширяется до примерно 4 кГц с помощью трюка - несколько (до десяти) нервов ударяют в разных фазах, складывая свою пропускную способность. Этот способ хорош тем, что мозг воспринимает информацию более полно - с одной стороны, мы всё таки имеем легкое частотное разделение, а с другой - можем еще смотреть сами колебания, их форму и особенности, а не просто частотный спектр. Этот принцип продлен на самую важную для нас часть - спектр человеческого голоса. Да и вообще, до 4 кГц находится вся наиболее важная для нас информация.
Ну и второй принцип - просто местоположение возбуждаемого нерва, применяется для звуков более 4 кГц. Тут уже кроме факта нас вообще ничего не волнует - ни фаза, ни скважность Голый спектр.
Таким образом, в области высоких частот мы имеем чисто спектральный слух не очень высокого разрешения, а для частот близких к человеческому голосу - более полный, основанный не только на разделении спектра, а еще и на дополнительном анализе информации самим мозгом, давая более полную стерео - картину, например. Об этом - ниже.
Основное восприятие звука происходит в диапазоне 1 - 4 кГц, в этом же диапазоне заключено человеческий голос (да и звуки, издаваемые большинством важных нам процессов в природе). Корректная передача этого частотного отрезка - первое условие естественности звучания.
О чувствительности (по мощности и частотной)
Теперь о децибелах. Вкратце - аддитивная относительная логарифмическая мера громкости (мощности) звука, наиболее хорошо отражающая человеческое восприятие громкости, и в то же время достаточно просто вычисляемая.
В акустике принято измерять громкость в дБ SPL (Sound Power Level - не знаю как это звучит у нас). Ноль этой шкалы находится примерно на минимальном звуке, который слышит человек. Соответственно отсчет ведется в положительную сторону. Человек может осмысленно слышать звуки громкостью примерно до 120 дБ SPL. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение ушей. Нормальный разговор - примерно 60 - 70 дБ SPL. Далее в этом разделе при упоминании дБ подразумевается дБ от нуля по SPL.
Чувствительность уха к разным частотам очень сильно различна. Максимальна чувствительность в районе 1 - 4 кГц, основные тона человеческого голоса. Звук 3 кГц - это и есть тот звук, который слышен при 0 дБ. Чувствительность сильно падает в обе стороны - например для звука в 100 Гц нам нужно уже целых 40 дБ (в 100 раз большая амплитуда колебаний), для 10 кГц - 20 дБ. Обычно мы можем сказать, что два звука отличаются по громкости, при разнице примерно в 1 дБ. Несмотря на это, 1 дБ - это скорее много, чем мало. Просто у нас очень сильно компрессированное, выровненное восприятие громкости. Зато весь диапазон - 120 дБ - воистину огромен, по амплитуде это миллионы раз!
|