Студентам > Рефераты > Сжатие речевого сигнала на основе линейного предсказания
Сжатие речевого сигнала на основе линейного предсказанияСтраница: 3/5
Если rm = -1, то произойдет обрыв в цепи передачи сигнала (обрыв прямой ветви). Такого быть не должно, поэтому необходимо следить за этим.
Модель акустических труб может быть представлена в виде фильтра, имеющего решетчатую (или лестничную) структуру. Основными параметрами такого фильтра являются коэффициенты отражения.
Система акустических труб – резонансная система, поэтому если фильтр без потерь, то на его АЧХ будут наблюдаться разрывы (всплески в бесконечность). Реально на месте этих всплесков будут резонансные пики, и резонансные частоты таких пиков называются формантными. Обычно в реальных голосовых трактах человека формантных частот (или формант) не более трех. Более подробно о коэффициентах отражения и решетчатых фильтрах можно прочитать в [2, глава 3].
Так как коэффициенты отражения и коэффициенты предсказания вычисляются в рамках одной и той же процедуры алгоритма Левинсона-Дурбина, то они могут быть выражены друг через друга. Приведем здесь эти алгритмы.
Прямая рекурсия (коэффициенты отражения à коэффициенты предсказания):
Обратная рекурсия (коэффициенты предсказания à коэффициенты отражения):
Как уже было сказано, фильтры сигнала ошибки представляют собой КИХ фильтры или нерекурсивные фильтры, что означает отсутствие ветвей обратной связи. Системы с КИХ также могут обладать строго линейной ФЧХ. Линейность ФЧХ является очень важным обстоятельством применительно к РС в тех случаях, когда требуется сохранить взаимное расположение элементов сигнала. Это существенно облегчает задачу их проектирования и позволяет уделять лишь внимание аппроксимации их АЧХ. За это достоинство приходится расплачиваться необходимостью аппроксимации протяженной импульсной реакции в случае фильтров с крутыми АЧХ [2].
Изобразим граф фильтра, имеющего решетчатую структуру, на примере фильтра 3–го порядка:
В отличие от формирующего фильтра этот фильтр имеет один вход и два выхода:
1) ei – последовательность отсчетов сигнала ошибки прямого линейного предсказания;
2) bi – последовательность отсчетов сигнала ошибки обратного линейного предсказания.
Важность bi определяется тем, что по нему совместно с сигналом ошибки ei могут быть оценены коэффициенты отражения. ,
где N – количество отсчетов в сегменте.
Полученная формула для расчета коэффициентов отражения имеет также другой физический смысл. Это не что иное, как коэффициент корреляции между последовательностью отсчетов сигнала ошибки прямого и обратного линейных предсказаний.
Приведем также рекуррентные разностные уравнения решетчатого фильтра сигнала ошибки: выход фильтра;
Начальные условия для этой рекуррентной процедуры: Реализация ДИКМ
Имея метод определения коэффициентов предсказания, рассмотрим блок-схему практической системы ДИКМ, показанную ниже.
В этой схеме предсказатель стоит в цепи обратной связи, охватывающей квантователь. Вход предсказателя обозначен . Он представляет собой сигнальный отсчет , искаженный в результате квантования сигнала ошибки. Выход предсказателя равен: ; (**)
Разность является входом квантователя, а обозначает его выход. Величина квантованной ошибки предсказания кодируется последовательностью двоичных символов и передается через канал в пункт приема. Квантованная ошибка также суммируется с предсказанной величиной , чтобы получить .
В месте приема используется такой же предсказатель, как на передаче, а его выход суммируется с , чтобы получить (см. рис. ниже).
Сигнал является входным воздействием для предсказателя и в то же время образует входную последовательность, по которой с помощь ЦАП восстанавливается сигнал x(t). Использование обратной связи вокруг квантователя обеспечивает то, что ошибка в - просто ошибка квантования и что здесь нет накопления предыдущих ошибок квантования при декодировании. Имеем
Следовательно, . Это означает, что квантованный отсчет отличается от входа ошибкой квантования независимо от использования предсказателя. Значит, ошибки квантования не накапливаются.
В рассмотренной выше системе ДИКМ оценка или предсказанная величина отсчета сигнала получается посредством линейной комбинации предыдущих значений , k = 1, 2, …, M, как показано в формуле (**). Улучшение качества оценки можно получить включением в оценку линейно отфильтрованных последних значений квантованной ошибки.
Конкретно, оценку можно выразить так: ,
где {} – коэффициенты фильтра для квантованной последовательности ошибок . Блок-схемы кодера на передаче и декодера на приеме приведены ниже.
|