_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Скремблирование и дескремблирование линейного сигнала

Скремблирование и дескремблирование линейного сигнала

Страница: 2/5

Схема, показанная на рис. 2.б, отличается от предыдущей тем, что на D-вход второго триггера (первый триггер не показан) подается псевдослучайная последовательность битов RND. При RND = 1 в момент формирования положительного фронта сигнала NRZ(I) выбирается положительная полярность импульса в линии, при RND = 0 — отрицательная. Последовательность битов RND синхронизирована сигналом CLK и формируется, например, генератором на основе сдвигового регистра с логическими элементами Исключающее ИЛИ в цепях обратных связей. Такое решение приводит к случайному чередованию полярностей импульсов кода RND(MLT-3) в отличие от их регулярного чередования в коде MLT-3. Схема формирования сигнала RND(Tl), показанная на рис. 2, в, построена аналогично и отличается наличием дополнительного логического элемента И, предназначенного для укорочения положительных импульсов кода NRZ(I).

Схема, представленная на рис. 2, г, позволяет дешифрировать коды MLT-3 или RND(MLT-3), т.е. преобразовывать их в обычный код NRZ(L). На выходе приемника формируются положительные импульсы «+» и «-», которые соответствуют разнополярным входным сигналам. Приемник также формирует синхросигнал CLK, например, с помощью генератора с фазовой автоподстройкой частоты.

Логический элемент ИЛИ суммирует импульсы «+» и «-», так что их первоначальная полярность не учитывается. В этом, пожалуй, и заключена основная предпосылка создания рассмотренного решения: полярность импульсов в линии может быть произвольной, так как приемник не обращает на нее внимания. А если это так, то можно случайным образом распределить полярности передаваемых импульсов и тем самым подавить периодические составляющие сигнала. Единственное ограничение состоит в том, что для исключения постоянной составляющей сигнала в линии среднее число положительных и отрицательных импульсов в любом достаточно большом интервале времени должно быть одинаковым. Это условие в данном случае выполнено.

Таким образом, закон, по которому данные скремблировались передатчиком, остается неизвестным приемнику!

Предлагаемый метод применим и к другим трехуровневым кодам, таким как B3ZS, B6ZS, HDB3.

Рассмотренные схемные решения позволяют простыми средствами уменьшить уровень помех, излучаемых на соседние витые пары проводов кабеля.

1.2. Двубинарное кодирование

Еще одно решение задачи уменьшения уровня излучаемых помех основано на применении двубинарного кодирования.

В схеме, показанной на рис. 3, потребитель данных находится на некотором удалении от оптоволоконной линии связи. Для приема данных потребителю выделена витая пара проводов в многожильном кабеле (рассматриваем только одно направление передачи). На выходе интерфейса FDDI (Fiber Distributed Data Interface — распределенный интерфейс передачи данных по волоконно-оптическим каналам) данные представлены кодом NRZ(I) и сопровождающим его синхросигналом CLK (см. рис. 1).

Проблема заключается в том, что непосредственная передача сигнала NRZ(I) со скоростью 125 Мбит/с по витой паре проводов создает повышенный уровень помех на соседних жилах кабеля. Ситуация усугубляется в отсутствие полезных данных, когда передается заполняющая паузу непрерывная последовательность лог. 1. Эта последовательность соответствует частоте сигнала NRZ(I), равной половине скорости передачи данных или 62,5 МГц. На этой частоте сигнал легко преодолевает паразитные емкостные и индуктивные связи и наводится на соседние провода кабеля. Поэтому следовало бы применить какой-либо дополнительный способ кодирования для снижения частоты сигнала в отсутствие данных и разравнивания его спектра при наличии данных. Рассмотренное далее трехуровневое двубинарное кодирование DBM (duobinary modulation) и включение заграждающего фильтра позволяют в значительной мере снизить уровень излучаемых помех. По способу построения код DBM во многом схож с описанными в п. 1.1 кодами MLT-3 и RND(MLT-S).

Рис. 3.Схема высокоскоростной передачи данных в двубинарном коде с использованием витой пары проводов

Как показано на рис. 3, код NRZ(I) с выхода интерфейса FDDI преобразуется шифратором в код DBM. Сигнал с выхода шифратора проходит через заграждающий R-L-C-фильтр, разравнивающий спектр сигнала, передатчик и по линии связи (витой паре проводов) поступает в приемник. Приемник выделяет из него синхросигнал CLK и данные, представленные в коде DBM Дешифратор кода DBM формирует коды NRZ(I) и NRZ(L). Скорость передачи данных во всем тракте постоянна и равна 125 Мбит/с.

Шифратор двубинарного кода (рис. 4) содержит инвертор, логический элемент Исключающее ИЛИ (XOR), тактируемый элемент Т задержки, дешифратор DC со структурой 2x4, элемент ИЛИ, электронные ключи SW1-SW3 и два источника Ш и U2 посто­янного напряжения. Временные диаграммы формирования кода DBM показаны на рис. 5.

Входной сигнал А инвертируется и поступает на первый вход элемента XOR. Сигнал Z с выхода этого элемента задерживается на один период сигнала CLK (например, с помощью D-триггера) и подается на второй вход элемента XOR. Дешифратор DC в зависимости от сочетания сигналов Z и Е формирует сигнал на одном из четырех выходов. При Z = Е = 0 сигнал G = 1 замыкает ключ SW3, поэтому на выход W шифратора поступает отрицательное напряжение от источника U2. При Z ≠ Е сигнал J = 1 замыкает ключ SW1, на выход шифратора поступает нулевое напряжение. При Z = Е = 1 сигнал F - 1 замыкает ключ SW2, на выход шифратора поступает положительное напряжение от источника Ш.

Рис. 4. Схема шифратора двубинарного кода DBM и структура заграждающего фильтра

Рис. 5.Временные диаграммы формирования двубинарного кода DBM

Процесс шифрации удобно проследить с помощью диаграммы состояний, приведенной на рис. 6.

Шифратор может находиться в одном из четырех состояний Q1-Q4. Если, например, шифратор пребывает в состоянии Q1, то при поступлении на вход А сигнала лог. 1 на его выходе W формируется положительное напряжение +1 В (величина условная). Этот факт отражен обозначением «Лог. 1 =+1 В» около двунаправленной связи между узлами Q1 и Q4. В этой ситуации шифратор переходит в состояние Q4.

Рис. 6. Диаграмма состояний шифратора двубинарного кода DBM

Если шифратор находится в состоянии Q1, то при поступлении на вход А сигнала лог. 0 на его выходе W формируется нулевое напряжение 0 В. Этот факт отражен обозначением «Лог. 0 = 0 В» около двунаправленной связи между узлами Q1 и Q2. В данной ситуации шифратор переходит в состояние Q2. Переходы между состояниями Q2 и Q3 возможны при поступлении на вход А сигналов лог. 1, но эти переходы сопровождаются выдачей отрицательного напряжения (-1 В) на выход W. Переходы между состояниями Q3 и Q4 возможны при поступлении на вход А шифратора сигналов лог. 0.