_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

http://pharmex-market.ru пантерные мухоморы цена за кг купить мухоморы.
Студентам


Студентам > Рефераты > Измерение параметров АЦП

Измерение параметров АЦП

Страница: 2/3

Преобразователь считается линейным, если его максимальная погрешность линейности δn не превышает 1/2 значения младшего разряда Δ. Оценку линейности АЦП проводят так же, как и для ЦАП.

Таким образом, нелинейность характеризует как ЦАП, так и АЦП и наряду с дифференциальной нели­нейностью имеет первостепенное значение для оценки качества преобразователей, поскольку все другие по­грешности (смещение нуля, погрешность полной шкалы и т. д.) могут быть сведены к нулю соответствующими регулировками.

Коэффициент преобразования Кпр определяет наклон характеристики преобразователя. Как отмечалось, для идеального ЦАП наклон характеристики должен быть таким, чтобы при включении всех разрядов (двоичный код полной шкалы No на его цифровых входах равен 111...1) выходное напряжение полной шкалы Uп.ш ЦАП было меньше опорного напряжения Uоп на значе­ние младшего разряда Δ, что соответствует прямой 1 на рис. 3 [соотношение (2)]. Для ЦАП с токовым выхо­дом наклон характеристики определяется номиналом ре­зистора обратной связи Roc (Рис. 4), который нахо­дится в составе преобразователя и предназначен для включения в цепь обратной связи усилителя-преобразо­вателя тока в напряжение. При номинальном значении Rос напряжение Un.ш отличается от Uon на значение младшего разряда Δ. Если номинал Roc больше, то ко­эффициент преобразования возрастает (прямая 3 на рис. 3), если меньше,—то уменьшается (прямая 2 на рис 3). Это объясняется тем, что абсолютные значения младшего разряда Δ2 и Δ3 для характеристик 2 и 3 рис. 3 отличаются от расчетного номинального значения Δ1, определяемого соотношением (3). При этом фактиче­ские значения младших разрядов преобразования опре­деляются соотношением

Δф=Uп.ш.ф./(2m-1)

где Uп.ш.ф.—фактическое значение полной шкалы преоб­разователя.

Погрешность полной шкалы δп.ш отражает степень отклонения реального коэффициента преобразования от расчетного, т. е. под δп.ш понимают разность между но­минальным значением полной шкалы преобразователя Uп.ш.н, определяемым соотношением (2), и его фактичес­ким значением Uп.ш.ф. Таким образом, для ЦАП

де Δн и Δф — номинальное и фактическое значения еди­ницы младшего разряда преобразователя.

Относительная погрешность полной шкалы определя­ется выражением

и, следовательно, не зависит от коэффициента преобра­зования ЦАП.

Погрешность полной шкалы АЦП харак­теризуется отклонением действительного входного напряжения от его расчетного значения для полной шкалы вы­ходного кода. Она может быть обусловлена погрешнос­тями опорного напряжения Uoп, многозвенного резистивного делителя, коэффициента усиления усилителя и т. д. Погрешность шкалы может быть скорректирована с по­мощью регулирования коэффициента усиления выходно­го усилителя или опорного напряжения.

Смещение нуля (погрешность нуля) равно выходному напряжению ЦАП при нулевом входном коде или среднему значению входного напряже­ния АЦП, необходи­мому для получения нулевого кода на его выходе.   Смещение нуля вызвано током утечки через разряд­ные  ключи ЦАП,

напряжением смеще­ния выходного уси­лителя либо компаратора. Данную погрешность можно скомпенсировать с помощью внешней по отношению к ЦАП или АЦП регулировки нулевого смещения. По­грешность нуля δ0 может быть выражена в процентах от полной шкалы или в долях младшего разряда. Следует отметить, что погрешность полной шкалы определяют с учетом смещения нуля характери­стики преобразователя, в то время как при определении погрешности линейности линеаризующая прямая должна проходить через начало реальной функции преобразова­ния fр(х), т. е. смещение нуля δ0 необходимо корректи­ровать, чтобы не внести погрешность в измерение линей­ности, поскольку она суммируется всякий раз при счи­тывании выходного сигнала. Действительно, для ЦАП справедливо неравенство

Uвых(B1+B2+…+Bm)+δ0≠UвыхB1+ UвыхB2+…+ UвыхBm+mδ0

в левой части которого погрешность нуля 6о суммируется один раз (все разряды включены), а в правой—т раз (m отдельных считываний выходного сигнала ЦАП). При этом погрешность измерения нелинейности будет мень­ше, если смещение нуля 6о запоминается и вычитается из напряжения каждого последующего считываемого раз­ряда до того, как будет произведено определение нели­нейности.

Абсолютная погрешность преобразования отражает отклонение фактического выходного сигнала преобразо­вателя от теоретического, вычисленного для идеального преобразователя. Этот параметр указывается обычно в процентах к полной шкале преобразования и учитывает все составляющие погрешности преобразования (нели­нейность, смещение нуля, коэффициент преобразования). Поскольку абсолютное значение выходного сигнала пре­образователя определяется опорным напряжением Uoп [см. соотношения (3), (4)], то абсолютная погрешность преобразования находится в прямой зависимости от ста­бильности напряжения Uоп. В большинстве преобразова­телей используется принцип двойного кодирования. По­этому для получения кратного значения младшего раз­ряда обычно выбирают Uon= 10,24 В. В этом случае для 12-разрядных ЦАП расчетное номинальное значение младшего разряда Δ=2,5 мВ и напряжение полной шка­лы Uп.ш.н= 2,5 (212—1) мВ= 10237,5 мВ.

Изменение напряжения Uon, например, на 1% вызо­вет изменение абсолютной погрешности преобразования также на 1%, что составит в верхней точке диапазона 102,375 мВ.

Дифференциальная нелинейность δн.д определяется отклонением приращения выходного сигнала преобразо­вателя от номинального значения младшего разряда при последовательном изменении кодового входного сигнала на единицу. Дифференциальная нелинейность идеально­го преобразователя равна нулю. Это означает, что при изменении входного кода преобразователя на единицу его выходной сигнал изменяется на значение младшего разряда. Допустимым значением дифференциальной не­линейности считается (1/2)[ПВ1] Δ(1/2 значения младшего раз­ряда).

Дифференциальная нелинейность может быть вычис­лена таким образом. Для конкретного m-разрядного пре­образователя расчетное значение единицы младшего раз­ряда Δр=[Uп.ш/(2m—l).

обеспечивающее контроль схем различного назначения, обычно сложное и дорогостоящее. Установки специаль­ного назначения, контролирующие схемы, как правило, одного типа, выполняют контроль быстрее, и с ними мо­гут работать люди, не обладающие большим опытом и мастерством.

В преобразователях с высокой разрешающей способ­ностью необходимо проконтролировать большое количе­ство параметров для получения информации о работе преобразователя. Например, 12-разрядный ЦАП или АЦП имеет 212, или 4096, возможных комбинаций вход— выход. Безусловно, без применения автоматизированной высокопроизводительной установки решить проблему контроля подобных преобразователей невозможно.

При контроле ИМС АЦП, особенно многораз­рядных, необходимо соблюдать меры предосторожности при подключении контролируемого преобразователя к установке контроля. Линии связи должны быть такой длины и такого сопротивления, чтобы падение напряже­ния на них не вызвало значительного увеличения по­грешности измерения параметров ИМС АЦП.

Если проверяют ЦАП с токовым выходом, то к его выходу подключают операционный усилитель, обеспечи­вающий преобразование выходного тока ЦАП в напря­жение. При этом резистор обратной связи, входящий в состав ЦАП, подключают без подстроечных потенцио­метров, чтобы можно было измерить погрешность сме­щения нуля и полной шкалы.

Далее перед измерением параметров ЦАП нужно определенное время для его прогрева, чтобы обеспечить установившийся тепловой режим контроля. Это относит­ся в первую очередь к контролю нелинейности ЦАП, поскольку требуется большое количество измерений, за время которых из-за нагрева ЦАП его параметры могут существенно измениться. Например, у ЦАП с рассеивае­мой мощностью порядка 500 мВт время прогрева в зави­симости от типа корпуса колеблется от 5 до 15 мин.

С целью уменьшения времени контроля желательно проводить контроль параметров ЦАП не во всех точках его выходной характеристики. Минимальный объем по­лучаем при контроле значений всех разрядов, включае­мых по одному. Однако такой контроль допустим только в случае малого взаимного влияния разрядов, когда все разряды или комбинации разрядов, которые включаются, полностью независимы от включенного (выключенного) состояния других разрядов. В противном случае для по­лучения достоверного результата следует производить контроль по всем дискретным значениям выходного сиг­нала, т. е. в 2mочках характеристики.

Далее будут рассмотрены методы контроля статичес­ких и динамических параметров ИМС АЦП, ко­торые могут быть использованы в автоматизированных системах контроля, предназначенных как для обеспече­ния серийного производства ИМС АЦП, так и для их входного контроля.

Рис.   4.   Характеристика АЦП при наличии шума                                                                                                                                                           Рис.   5.   Характеристика идеального четырехразрядного АЦП

3. Контроль статических параметров ИМС АЦПИз-за неопределенности квантования при аналого-цифровом преобразовании, равной 1/2 значения младшего раз­ряда Δ, контроль АЦП представляет большие трудности по сравнению с контролем ЦАП, поскольку приходится не просто измерять выходной сигнал для заранее определённого кода (в случае ЦАП), но также определять как выходной код, так и точку (момент) изменения выходного кода при непрерывном изменении входного напряжения. Шумы (в преобразуемом сигнале или в преобразователе) вносят неопределенность в точное задание аналоговых входных величин, при которых происходят кодовые преобразования выходных сигналов, а также увеличивают диапазон квантования. Характер погрешности, обуслов­ленной влиянием шума, показан на рис. 4.

При отсутствии шума и погрешности линейности АЦП изменение выходного кода происходит при номинальных значениях входного напряжения. При отсутствии шума и наличии допустимых погрешностей линейности АЦП выходной код изменяется при изменении входного напряжения относительно его номинального значения на (±1/2) Δ. Шумы вызывают увеличение неопределенности момента изменения выходного кода (шумы показаны на рис. 4 в виде тонких линий).

Отметим, что точность АЦП не может быть лучше его разрешающей способности. В ЦАП, напротив, техниче­ские требования по точности превосходят требования по разрешающей способности. Такое различие объясняется противоположным характером этих преобразователей:

выход ЦАП может с высокой точностью воспроизводить уровень, являющийся мерой точного числа, между тем как выходной уровень АЦП определяется любой вход­ной величиной в пределах кванта.

Наибольшим числом контролируемых параметров об­ладают АЦП последовательного приближения, в котором применяются ЦАП и компаратор в цепи обратной связи. Эти преобразователи, так же как и ЦАП, характеризуют­ся дифференциальной нелинейностью и немонотонностью в отличие от интегрирующих АЦП, у которых может на­блюдаться только нелинейность. На рис. 5 показана выходная характеристика идеального четырехразрядного АЦП, каждая ступенька которой постоянна по ширине и равна Δ. Тем не менее даже для идеального АЦП (всех типов) существует неопределенность, равная (±1/2)А относительно входного напряжения, соответствующего какому-либо выходному коду АЦП. У реального АЦП (имеющего нелинейность) неопределенность возрастает до суммы погрешностей квантования и линейности. Если ЦАП, применяемый в АЦП последовательного приближения, нелинеен, то размер ступеньки отклонится от идеального значения и напряжения переходов сдвинутся от напряжении идеальных переходов. На рис. 10.30 при­ведена характеристика АЦП, внутренний ЦАП которого имеет погрешности разрядов: δ1=(l/2)A (при коде 1000), δ2=(—1/2)А (при коде 0100), δ3=0 (при коде 0010), δ4=0 (при коде 0001). Области рис. 10.30, отме­ченные пунктирными кружками, свидетельствуют о том, что изменения в по­грешности дифференци­альной линейности (а следовательно, и в по­грешности линейности) имеют место при пере­носах кода.Метод контроля па­раметров АЦП, кото­рый необходимо ис­пользовать в каждом конкретном случае, за­висит от многих причин. Одна из них—время преобразования контро­лируемого АЦП. Для преобразователей   со временем преобразова­ния менее 100 мкс (пре­образователи последовательного .приближения) могут быть использованы все методы контроля. Иначе обстоит дело при контроле «медленных» АЦП. Например, пре­образователи интегрирующего типа, время преобразова­ния которых составляет десятки и сотни миллисекунд, не могут быть исследованы динамическим методом, преду­сматривающим наблюдения погрешности с помощью ос­циллографа.Простейший метод контроля параметров АЦП за­ключается в применении образцового ЦАП для форми­рования входного аналоговового сигнала контролируемо­го АЦП и в последующем сравнении входного кода об­разцового ЦАП и выходного кода АЦП. Однако он не определяет точного значения входного сигнала в момент перехода кода в пределах А. Поэтому таким методом можно определить точность калибровки (погрешность шкалы), нелинейность, дифференциальную нелинейность АЦП с погрешностью контроля не менее Δ. Рассмотрим схемы нескольких устройств, позволяющих автоматизировать процесс контроля параметров АЦП, в которых ис­пользуется многоразрядный образцовый ЦАП, предна­значенный для формирования входного сигнала АЦП ли­бо для восстановления аналогового сигнала из выходно­го кода АЦП. При этом линейность ЦАП должна быть на порядок выше линейности проверяемого АЦП.

На рис. 6 представлена схема одного из таких устройств. С генератора Г напряжение синусоидальной формы Uвх поступает на вход контролируемого АЦП и

Рис. 6. Схема устройства автоматического контроля парамет­ров АЦП

на один из входов дифференциального усилителя У. Ре­зультат преобразования в виде кода Ni с частотой запус­ка АЦП заносится в регистр. Затем код Ni преобразует­ся с помощью образцового ЦАП (разрядность которого должна быть, по крайней мере, на четыре единицы боль­ше разрядности контролируемого АЦП) в аналоговый сигнал Uвыx, подаваемый на другой вход усилителя. Раз­ностный сигнал усилителя ΔU=k(Uвх — Uвыч) характе­ризуется суммой погрешности квантования (±1/2)А и погрешности линейности АЦП. Следует учитывать, что любой сдвиг по фазе между входным сигналом АЦП и задержанным выходным сигналом ЦАП дает дополни­тельную погрешность. Поэтому для минимизации этой дополнительной погрешности частота входного сигнала должна быть достаточно низкой и определять ее необхо­димо исходя из быстродействия контролируемого АЦП и образцового ЦАП.

На рис. 7 приведена схема еще одного устройства автоматического контроля АЦП, где образцовый ЦАП используется в качестве формирователя входного воздей­ствия на контролируемый преобразователь. Формирователь кодов ФК обеспечивает формирование на цифровых входах образцового ЦАП любой требуемой кодовой ком­бинации. Выходное напряжение ЦАП подается на вход контролируемого АЦП. Цифровой код Ni с АЦП переда­ется в запоминающий регистр ЗРг после каждого преоб­разования. Цифровое слово Ni’, присутствующее на входе образцового ЦАП, вычитается в устройстве ВУ из кода Ni и цифровая ошибка ΔN=Ni—Ni’ подается на ЦАП с низкой разрешающей способностью, на выходе которого

Рис. 7. Схема устройства контроля АЦП с разбраковкой резуль­тата контроля

она представляется в аналоговой форме. Кроме того, цифровая ошибка ΔN может быть подана на цифровой компаратор ЦК, в который занесены верхний и нижний пределы ее допустимых значений, что позволяет произве­сти проверку АЦП по принципу «годен—не годен», т. е. разбраковку контролируемых преобразователей. Разре­шающая способность образцового ЦАП в данной схеме, как и в предыдущей, должна быть на порядок выше, чем в контролируемом АЦП, чтобы уровень квантования ана­логового сигнала на входе АЦП не ограничивал разре­шающую способность считывания ошибки.

Как указывалось, сложность контроля параметров АЦП заключается в том, что каждому его выходному числовому коду соответствует определенная непрерывная аналоговая входная величина (ширина ступеньки на рис. 5, 10.30), крайние значения которой формируют со­ответствующие смежные числовые переходы. Поэтому для более качественного контроля характеристик АЦП тре­буется определение значения каждого из переходных уровней входного напряжения, что не обеспечивается пре­дыдущей схемой.

На рис. 8 изображена схема устройства, осущест­вляющего контроль выходной характеристики АЦП с ав­томатическим поиском переходных уровней. Это достига­ется включением контролируемого АЦП в цепь обратной связи, регулирующей его входное напряжение. Цифровой код Ni определяемого перехода с формирователя кодов ФК поступает на цифровой компаратор ЦК и на образ

Рис. 8. Схема устройства контроля АЦП с автоматическим поиском переходных уровней

цовый ЦАП. На другой вход компаратора подается вы­ходной цифровой сигнал контролируемого АЦП. Цифро­вой компаратор вырабатывает сигнал, управляющий ключом К, через который на вход интегратора И посту­пает напряжение Но определенной полярности, формируе­мое программируемым источником напряжения ПИН и инвертором Ин. Система сфазирована таким образом, что изменяющееся выходное напряжение интегратора прибли­жает выходной код АЦП к записанному в компаратор коду Ni. В момент достижения равенства кодов направ­ление изменения выходного напряжения интегратора из­меняется на противоположное вследствие переключения ключа К. В дальнейшем процесс продолжается при пе­риодическом пилообразном колебании выходного напря­жения интегратора вблизи уровня перехода. Точность, с которой производится поиск уровня перехода, определя­ется постоянной времени Т интегратора, его входным ин­тегрируемым напряжением Uo и быстродействием конт­ролируемого АЦП. Действительно, приращение ΔUи выходного напряжения интегратора за время интегрирова­ния tи определяется соотношением

ΔUи=U0tи/T

Длительность интегрирования зависит от начальной разности кодов, поступающих на цифровой компаратор:

при большой разности длительность больше. Минималь­ное значение tn будет при периодическом колебании вы­ходного напряжения интегратора относительно уровня пе­рехода. При этом tи определяется периодичностью отсче­тов АЦП, т. е. его быстродействием, и в предельном слу­чае не превышает периода запуска АЦП Тзап. Для обес­печения требуемой точности контроля значение ΔUи не должно превышать нескольких процентов от значения младшего разряда Л контролируемого АЦП. При извест­ных параметрах контролируемого АЦП (Δ и Тзап) и по­стоянной времени Т интегратора входное интегрируемое напряжение Uo для допустимой относительной погрешно­сти γ= ΔUи/Δ поиска уровня перехода определяется не­равенством

и для каждого конкретного типа АЦП формируется про­граммируемым источником напряжения ПИН. Для уменьшения времени поиска уровня перехода при боль­ших начальных рассогласованиях входных кодов компа­ратора начальное значение Uo устанавливается значи­тельно большим требуемого до момента наступления ра­венства кодов, после чего U0 автоматически приводится к заданному значению. Найденное таким образом напря­жение перехода Ui2 сравнивается затем дифференциаль­ным усилителем У с напряжением Ui1, создаваемым об­разцовым ЦАП. Разностное выходное напряжение усили­теля и будет характеризовать погрешность контролируе­мого АЦП в заданной точке характеристики.

Рассмотренные методы контроля АЦП с использова­нием образцового ЦАП нашли широкое применение при создании автоматизированного контрольно-измерительного оборудования.

4. Контроль динамических параметров ИМС АЦП

Для преобразования быстроизменяющихся сигналов с широким частотным спектром, быстрого ввода информа­ции в ЭВМ, в частности аналоговых сигналов с первич­ных преобразователей при работе в многоканальных ин­формационных системах, требуются АЦП, имеющие хорошую линейность и малое время преобразования. По­следнее определяют как интервал времени, в течение ко­торого выходной сигнал АЦП при подаче ступенчатого входного сигнала достигает значения, отличающегося от установившегося не более чем на допустимую погреш­ность. Следует иметь в виду, что при определении вре­мени преобразования необходимо учитывать статическую погрешность преобразования, чтобы последняя не входи­ла составной частью в результирующую погрешность определения времени преобразования. Поэтому под уста­новившимся значением выходного сигнала АЦП пони­мают результат преобразования в статическом режиме, когда процесс преобразования заведомо завершился.

Рис 9 Схема Устройства измерения времени преобразования АЦП с внещним запуском.

 
В отличие от ЦАП, для которых динамическая и ста­тическая погрешности преобразования могут быть опре­делены как составная часть его разрешающей способно­сти, в контролируемом АЦП погрешность преобразования, как бы мала она ни была, лимитируется погрешно­стью его дискретности. Помимо определения времени пре­образования в ряде случаев требуется контроль допол­нительных динамических характеристик: времени пере­ходного процесса во входных цепях АЦП tвх и времени цикла преобразования tц, необходимого для отработки всех разрядов АЦП и получения на выходе соответству­ющего кода. Эти характеристики связаны соотношением tпр=tвх+tц, поэтому достаточно проконтролировать tгр и одну из оставшихся величин. Контроль времени tвх целесообразен, когда оно соизмеримо со временем кодиро­вания, поскольку значение tax можно использовать в дальнейшем для определения соответствующей составля­ющей результирующей погрешности в динамическом ре­жиме. Если время преобразования не зависит от значе­ния входного сигнала, то целесообразно контролировать одно значение tпр в точке, расположенной в верхней поло­вине диапазона измерений.