_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Поиск - windows 7 скачать гаджет корзина.
Студентам


Студентам > Рефераты > Метод Гурвица

Метод Гурвица

Страница: 2/6

Элементы Сij = выигрышу игрока А, если он использует стратегию Аi.

В данном курсовом проекте состязательная задача решается по методу Гурвица.

Пусть в игре принимают участие два игрока А и В.

Рассматривается конфликтная ситуация между двумя сторонами А и В. Игрок А имеет m стратегий, а В имеет n стратегий: А={А1, А1,…, А1}; В={В1, В1,…, В1}.

Взаимосвязь между стратегиями любого из игроков определяется платёжной матрицей С={Cij}m*n. Cij – выигрыш игрока А. Заданы статистические коэффициенты оптимизации ().

Цель игры состоит в том, чтобы вывести ситуацию из условия неопределённости, найти максимальный выигрыш, по которому определить оптимальную стратегию каждого игрока, а также игрока разрешающего конфликтную ситуацию.

Решение игры и исходные данные сводятся в таблицу Гурвица (табл. 2.1.1).

Таблица 2.1.1

 

В1

В2

Вn

Наименьший

выигрыш

Наибольший

выигрыш

Коэффициенты оптимизма

1

k

А1

C11

C12

C1n

a1

А`1

V11

V1k

А2

C21

C22

C2n

a 2

А`2

V21

V2k

Аm

Cm1

Cm2

Cmn

a m

А`m

Vm1

Vmk

Где j – статистические коэффициенты оптимизации;

к – количество оптимизмов;

Аj – стратегии игрока А;

Вj - стратегии игрока В;

Vij – расчетные условные выигрыши;

С учётом коэффициентом оптимизма вычисляем условные выигрыши

 

Выбираем решение о выборе стратегии, при , где 0 (для  игрок переходит к стратегии «азартного игрока»; для  - стратегия абсолютного оптимизма).

.

2.2.Экономико – математическая модель

Основная теорема теории игр, состоит в следующем: любая конечная игра имеет, по крайне мере, одно решение, возможно в области смешанных стратегий. Применение оптимальной стратегии позволяет получить выигрыш равный цене игры: ,  – цена игры.

Применение игроком А оптимальной стратегии должно обеспечивать ему выигрыш при любых действиях  игрока В, не меньше цены . Выполняется соотношение:

,  - вероятность использования  стратегии игрока А.

Аналогично, для игрока В оптимальная стратегия должна обеспечить при любых стратегиях игрока А проигрыш, не более :

,  - вероятность использования стратегии игрока В.

Задача имеет решение игры, если её матрицы не содержит седловой точки  ().

Расчет выигрышей производится по целевой функции:

Система ограничения:

 

2.3.Описания метода Гурвица

2.3.1.         Выбираем по строкам наименьший выигрыш и заполняем колонку а.

2.3.2.         Выбираем по строкам наибольший выигрыши и заполняем колонку

2.3.3.         Производим расчёт выигрыша по формуле: ; результаты заносим в таблицу и получаем матрицу .

2.3.4.         По методу максимина определяется наибольший из всех расчётных выигрышей; по наибольшему значению определяется стратегия данного игрока.

2.3.5.         Для разрешения конфликтной ситуации составляется таблица Гурвица относительно игрока В. В таблице меняем платёжную матрицу.

2.3.6.         Далее также применяем принцип Гурвица и метод максимина относительно игрока В.

2.3.7.         Игрок, разрешающий конфликтную ситуацию определяется по наибольшему расчётному выигрышу из соответствующих оптимальных стратегий игроков.

2.4.Алгоритм задачи

2.4.1.         Алгоритм основной программы

 

2.4.2.         Алгоритм процедуры W_rezultat