_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Дипломные работы > Анализ погрешностей волоконно-оптического гироскопа

Анализ погрешностей волоконно-оптического гироскопа

Страница: 5/11

Шумы, связанные с обратным рассеянием и отражением, могут содержать две компоненты: когерентную и некогерентную. Некогерентная составляющая увеличивает общий уровень хаотической световой мощности на детекторе, это источник дополнительных дробовых шумов. Некогерентная составляющая не интерферирует с сигналом, связанным с измеряемой скоростью вращения.

Уровень дополнительного вклада в дробовой шум вычислялся, и во всех практических ситуациях величина его не более 1 дБ [3].

Когерентная составляющая обратного рассеяния и шумы отражения суммируются векторно с противоположно бегущими лучами; это приводит к возникновению ошибки в разности фаз между двумя лучами, зависящей от фазы шумового сигнала. Например, как отмечается в работе [3], френелевское отражение от граничной поверхности стекло-воздух составляет около 4% по интенсивности.

В наихудших условиях эта компонента может сложиться когерентно с основным лучом и дать изменение фазы более чем 10-1 рад, что эквивалентно скорости вращения около 10 град/с. Ошибку за счет когерентного отражения можно исключить, если использовать в ВОГ источник излучения с длиной когерентности много меньше, чем длина волоконного контура. Тогда шум связанный с отражением на конце волокна, суммируется некогерентно с полезным сигналом.

 Шум, связанный с когерентным обратным рэлеевским рассеянием, может быть уменьшен подобным же образом, т. е. посредством использования источника излучения с наиболее короткой длиной когерентности. Однако всегда имеется некий отрезок волокна, расположенный примерно в середине контура, длина которого равна длине когерентности источника, и именно этот участок волокна дает когерентную составляющую обратного рассеяния.

Оценка величины этого шума может быть сделана на основе простой модели, в которой предполагается, что потери в волокне имеют место благодаря равномерному рассеянию на крошечных неоднородностях в сердечнике волокна (рэлеевское рассеяние). Если волокно обладает потерями 10 дБ/км, то в одном метре рассеивается 0,1% падающей энергии; обратно рассеивается доля рассеянной энергии, равная квадрату числовой апертуры волокна. Таким образом, в данном одном метре волокна энергия порядка 10-5  от падающей рассеивается назад к источнику света.

Если рассматривать середину контура и если полное затухание в контуре равно 10 дБ, то центральная часть контура (длиной в один метр) дает отклонение в одну миллионную часть по мощности (10-6) по отношению к принимаемой мощности в устройстве сравнения фаз, что приводит к ошибке при оценке фазы, равной 10-3 рад (если обратное рассеяние когерентно). Тогда эквивалентная ошибка при оценке скорости вращения составляет величину около 150 град/ч (см. рис. 1.5).

Эффективная ошибка, связанная с оценкой скорости вращения, пропорциональна квадратному корню из длины когерентности излучения источника. Учитывая это, в работе [3] показано, что для обнаружения суточного вращения Земли эффективная максимальная длина когерентности равна 0,1 мм; для регистрации вращения со скоростью

0,1 град/ч длина когерентности составляет величину порядка нескольких микрометров.

Ряд исследователей используют модуляторы случайной фазы, размещаемые в середине контура для того, чтобы «декогерировать» (декоррелировать) шум обратного рассеяния .

            Свойство взаимности ВОГ может нарушаться под влиянием изменений внешней температуры. Температурные градиенты, изменяющиеся во времени в волоконном контуре, приводят к появлению сигнала, эквивалентного не которому значению скорости вращения. Анализ для худшего случая указывает на необходимость жесткой температурной стабилизации контура, однако ограничения могут быть сняты в значительной степени, если сделать намотку катушки симметричной.

Отклонения от свойства взаимности имеют место лишь во время изменения температурного градиента и не имеют места, если температура всего контура изменяется однородно. Влияние температурного градиента, имеющего место между двумя стабильными распределениями температур, вызывает ошибку в считывании угловой скорости в течение температурных изменений.                       

Стабильность масштабного коэффициента (т. е. наклона кривой  в функции от W  весьма существенна в гироскопе. В случае ВОГ постоянство масштабного коэффициента определяется стабильностью площади витка контура и длины волны.

Площадь витка является функцией температуры и материала катушки, на которую наматывается контур. Весьма вероятно, что для прибора высокой точности потребуются стабилизация температуры. Возможно потребуется вносить температурную коррекцию в процессе обработки сигнала. Следует также заметить, что температурные коэффициенты расширения волокна и катушки для намотки должны быть хорошо согласованы с тем, чтобы минимизировать вызванные изменениями температуры потери на микроизгибах в волокне. Они имеют место в том случае, когда волокно находится под механическим напряжением, и могут составлять величину более 10 дБ/км.

Источником шумов в ВОГ, ухудшающих чувствительность прибора, являются флуктуации излучения оптического источника (лазерного диода, светодиода или суперлюминесцентного диода). Этот шум проявляется в флуктуациях измеряемого выходного сигнала. Излучение источника ВОГ может изменяться как по интенсивности, так и по длине волны генерируемого светового потока.

Шум, связанный с изменением интенсивности излучения, увеличивает общий уровень дробовых шумов; он может быть вызван либо флуктуациями тока смещения, прилагаемого к источнику, либо внутренними флуктуациями в самом источнике. В случае полупроводниковых лазерных источников шум, связанный с изменениями интенсивности, добавляет один или два децибела в общий уровень дробовых шумов. При проектировании ВОГ спектр подобного шума необходимо, конечно, знать; известно, что в случае полупроводниковых лазеров этот спектр весьма сложен.

Следует, однако, заметить, что во многих схемах регистрации, используемых в ВОГ, оптическая фаза преобразуется в интенсивность посредством интерферометрического процесса. На выходе электронного устройства считывают значения оптической интенсивности, эквивалентные фазе. Нестабильность в интенсивности излучения оптического источника (даже, если длина волны излучения остается постоянной) приводит к нестабильностям в значениях фазы.

Гетеродинные системы, а также системы регистрации с обращением фазы в нуль устойчивы по отношению к нестабильностям такого типа. Известно, что у полупроводников источников со временем появляется нестабильность интенсивности излучения, вызванная старением, однако этот эффект может быть скомпенсирован, если измерять полную интенсивность, от задней грани источника и регулировать соответствующим образом ток смещения. Неясно, насколько эффективна эта процедура, так как изменения в токе смещения вызовут соответствующие изменения температуры лазера, а это приведет к соответствующим изменениям в длине волны излучения на выходе, тем самым воздействуя на, масштабный коэффициент.

Как уже отмечалось, стабильность длины волны излучения источника излучения ВОГ непосредственно влияет на масштабный коэффициент прибора. Лазеры с термической стабилизацией могут быть достаточно стабильны, хотя изменения в длине волны излучения в зависимости от старения тока накачки и температуры теплоотвода должны быть включены в спецификацию при их предназначении для ВОГ; это позволит выбрать диоды с подходящими характеристиками.

Следует, однако, заметить, что шумы, связанные с изменением длины волны излучения источника ВОГ, незначительны в большинстве систем регистрации фазы. Они фактически декоррелируют по частоте обратное рэлеевское рассеяние излучения. Например, известны системы ВОГ, где излучение гелий-неонового лазера специально модулируется по частоте с тем, чтобы декоррелировать обратно рассеянное излучение.

Рассмотрим теперь шумы, появляющиеся в ВОГ из-за нелинейного характера взаимодействия излучения со средой, в которой оно распространяется. Несмотря на очень низкие уровни излучения, распространяющегося в ВОГ нелинейные эффекты могут быть весьма значительными, если учесть, конечно, что ВОГ очень чувствителен к фазовым невзаимностям в контуре. Нелинейный электрооптический эффект носит название эффекта Керра и состоит в изменении фазового набега световой волны, распространяющейся в среде, под действием интенсивности излучения (т. е. фаза изменяется в зависимости от квадрата амплитуды излучения). При исследованиях ВОГ было

замечено, что эффект Керра вносит значительный вклад в паразитный дрейф прибора. Рассмотрим для полноты модели шумов и нестабильностей наиболее важные аспекты влияния эффекта Керра на чувствительность ВОГ .

Фазовая постоянная распространения для волны, бегущей по часовой стрелке, пропорциональна сумме интенсивности прямой волны и удвоенной интенсивности обратной волны. То же справедливо для волны, бегущей против часовой стрелки в контуре. Следовательно вклады в нелинейность определяются как волной, распрестраняющейся по часовой стрелке, так и волной, распространяющейся против часовой стрелки. Если интенсивности встречно бегущих волн разные, а это может быть при температурных изменениях светоделителей пучков, ответвителей и т. д., то фазовые постоянные распространения для противоположно бегущих волн изменяются различным образом. Налицо фазовая невзаимность контура ВОГ, приводящая к соответствующему дрейфу прибора.

 

Результирующий дрейф можно записать в виде:

 

                                       (1.46)

 

где В - постоянная; К - коэффициент расщепления светоделителя по мощности;  I0 - интенсивность источника излучения.

 

Для компенсации паразитного дрейфа  может быть предложен способ специальной модуляции излучения источника. Сущность способа состоит в том, что излучатель работает в режиме с 50%-ным излучательным циклом, что позволяет выровнять общие интенсивности встречно бегущих волн. Для обеспечения хорошей чувствительности ВОГ к измерению вращения, изменения в коэффициенте распределения энергии в расщепителе пучка должны выдерживаться с точностью до10-4 .

Самокомпенсацию влияния эффекта Керра можно также реализовать выбором источника излучения ВОГ с соответствующими спектральными и статистическими характеристиками. Как известно, гауссовский источник шумового поля, имея гауссово распределение амплитуды, обладает рэлеевским распределением огибающей или экспоненциальным распределением интенсивности. Для такого источника

 

                                                                   (1.47)

 

что приводит к обращению в нуль паразитного дрейфа.  Некоторые источники излучений, такие как суперлюминесцентный диод и полупроводниковый лазер, работающий в многомодовом несинхронизированном режиме, обладают распределением огибающей, близкой к рэлеевскому. Следовательно, использование таких излучателей в ВОГ позволит самокомпенсировать влияние эффекта Керра.

Нестабильность характеристик ВОГ, приводящая к появлению дрейфа в приборе, может быть обусловлена влиянием внешнего магнитного поля (эффект Фарадея).

При механическом несовершенстве конструкции ВОГ серьезным источником шумов могут быть акустические поля, механические вибрации и ускорения.

 Для полноты статистической модели возмущений ВОГ следует хотя бы упомянуть о таких возмущениях, как шум типа  ( низкочастотный шум фотодетектора ), спонтанные и стимулированные шумы лазерного источника излучения, мультипликативные, шумы ЛФД, рассеяние Бриллюэна (рассеяние   на фононах - акустических образованиях в среде), рассеяние Ми ( рассеяние   на больших неоднородностях в среде ). Однако, практически, уровень интенсивности этих шумов невысок.

Таким образом, мы рассмотрели обобщенную модель источников шумов и нестабильностей ВОГ. В зависимости от варианта конструкции ВОГ те или иные источники шумов и нестабильностей могут играть большую или меньшую роль. Основными источниками являются шумы обратного рэлеевского рассеяния, нелинейный электрооптический эффект, температурные градиенты, внешнее магнитное поле, а также нестабильность интенсивности и длины волны источника излучения. Принципиально неустранимым шумом является дробовый (фотонный) шум полезного сигнала, появляющийся в системе регистрации и определяющий фундаментальный предел чувствительности (точности) ВОГ.

Анализ свойства взаимности и обобщенной модели шумов и нестабильностей ВОГ позволяет рассмотреть схему так называемой минимальной конфигурации ВОГ . Такая конфигурация должна включать тот минимальный набор элементов, которые позволят создать работоспособный прибор достаточно высокой чувствительности.

Поскольку основные особенности работы ВОГ тесно связаны со свойством взаимности, а кроме того, даже небольшие отклонения взаимности могут привести к погрешностям в показаниях скорости вращения и к эффектам долговременного дрейфа - выбор минимальной конфигурации ВОГ должен быть основан на этом ключевом моменте - свойстве взаимности. Вариант минимальной конфигурации при веден на рис. 1.7.

Излучение источника с помощью устройства ввода излучения (возможна линзовая, иммерсионная, торцевая и другие системы) вводится в волоконный световод. Эффективность ввода излучения в одномодовое волокно зависит от степени пространственной когерентности излучения источника. Чем больше пространственная когерентность излучения, тем меньше потери при вводе излучения в волокно.

Расчет и эксперименты приведённые в [2] показали, что для уменьшения влияния обратного рэлеевского рассеяния и эффекта Керра излучатель должен обладать малой длиной временной когерентности. На практике в качестве излучателей используют светодиоды (СД),лазерные диоды (ЛД) и суперлюминисцентные диоды (СЛД). Последние два типа излучателей имеют достаточно высокую степень пространственной когерентности; СД имеет наименьшую временную когерентность.

Модовый фильтр обычно состоит из отрезка одномодового волокна (пространственный фильтр) и поляризатора. По-видимому, целесообразно пространственный фильтр выполнить из одномодового волокна, сохраняющего поляризацию.

 

 

 Рис 1.7. Минимальная конфигурация ВОГ.

 

 

Применение модового фильтра будет способствовать выполнению основных условий свойства взаимности Лоренца, тем самым уменьшая дрейф ВОГ. Стабильный модовый фильтр будет эффективен, если среда между входом и выходом волоконного контура будет сохраняться линейной и неизменной во времени.

Необходим точный контроль поляризации излучения на входе и выходе контура. Качество поляризатора зависит от степени режекции поляризатором лучей с ортогональной поляризацией. В худшем случае, когда на каждое направление поляризации приходится излучение равной интенсивности, нежелательный сигнал находится в квадратуре по фазе с полезным сигналом; именно в этом случае имеет место максимальная фазовая ошибка. Как сообщается в [3], для поляризатора с режекцией нежелательной поляризации в 70 дБ фазовое отклонение в системе регистрации составляет величину около 10-4 рад,

что эквивалентно уходу гироскопа около 20 град/ч. Однако уход можно уменьшить на один-два порядка даже и с использованием упомянутого поляризатора, если поляризации излучений на входе и выходе будут совпадать   с осью поляризатора с точностью до 1°. Таким образом, вопрос стабильности поляризации излучения в ВОГ имеет весьма серьезное значение.

Экспериментальная конструкция ВОГ, рассмотренная в [3], была выполнена целиком на одномодовом волокне с устойчивой поляризацией и продемонстрировала высокую чувствительность. Сохранить устойчивой поляризацию в контуре можно, по-видимому, и при использовании обычного одномодового волокна,   но намотку последнего надо производить на катушку определенного радиуса и с определенным механическим   напряжением, поскольку сам факт наматывания волокна на катушку приводит к селекции и сохранению поляризационных свойств в системе.

Для улучшения степени режекции нежелательной поляризации возможно также использование двух или большего числа поляризаторов . Следует, однако, упомянуть, что полная деполяризация излучения в ВОГ дает иногда весьма хорошие результаты.

Пространственный фильтр, располагаемый между ответвителями  P1 и P2, должен обладать пространственной характеристикой, перекрывающейся с модовой структурой на входе и выходе волоконного контура. Кроме того, он должен сохранять стабильное пространственное соотношение с торцами волокна; модовая структура в волок

не на входе и выходе контура должна быть идентичной.

Поскольку в ВОГ, как правило, используется одномодовое волокно, ослабление пространственным фильтром мод более высокого порядка не вызывает затруднений.

При применении в ВОГ обычного одномодового   волокна (не сохраняющего поляризацию) внутрь контура помещают поляризационное устройство ПУ, которое дополнительно селектирует и контролирует поляризацию в контуре, тем самым стабилизируя оптическую мощность моды, выделяемой модовым фильтром.