_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Дипломные работы > Разработка микроблока питания

Разработка микроблока питания

Страница: 4/12

│   1    │ 0,20     │ 5  00,3 77 010 5-3 0 │    -     │    -    │0,156 77 010 5-3 0│

│   2    │ 0,197    │ 8,40   7   0 │ 0,3 77 010 5-4 0 │ 0,7 77 010 5-4 0│0,14 77 010 5-2 7  0│

│   3    │ 0,006    │ 0,076    │ 2,126    │ 0,016   │0,0888    │

│   4    │  -       │ 0,4 77 010 5-3 0 │ 0,016    │ 2,126   │0,8888    │

│   5    │ 0,6 10 5-3 0 │ 0,3 77 010 5-5 0 │ 0,1 77 010 5-5 0 │ 0,1 77 010 5-5 0│0,60      │

├────────┼──────────┼──────────┼──────────┼─────────┼──────────┤

│ Итого  │ 0,457    │ 8,477    │ 2,142    │ 2,142   │ 0,779    │

└────────┴──────────┴──────────┴──────────┴─────────┴──────────┘

 ш0

 

.

              КОНСТРУКТИВНЫЙ РАСЧЕТ ПЕЧАТНОЙ ПЛАТЫ

 

     Материалы, используемые  в  качестве  оснований для печатных

плат (ПП),  должны обладать совокупностью определенных свойств. К

их числу  относятся высокие электроизоляционные свойства,  доста-

точная механическая прочность и др.  Все эти свойства должны быть

стабильными при воздействии агрессивных сред и изменяющихся усло-

вий. Кроме того,  материал платы должен обладать хорошей сцепляе-

мостью с токопроводящим покрытием, минимальным короблением в про-

цессе производства и эксплуатации.  Если платы изготавливаются из

листового материала,  то  последний  должен допускать возможность

обработки резанием и штамповкой.

     В качестве  материала  ПП используем листовой фольгированный

материал - стеклотекстолит фольгированный   марки     СФ 2-50-2,0

ГОСТ 10316-70.

     Выбор данного материала объясняется назначением и  условиями

работы микромодуля.  Печатные  платы  из  стеклотекстолита имеют

нужную устойчивость к механическим,  вибрационным,  климатическим

воздействиям по сравнению с платами из гетинакса.  Физико-механи-

ческие и электрические свойства сведены в таблицу

 

                                                   Таблица 2

          Физико-механические свойства стеклотекстолита

┌─────────────────────────────────────────────────────┬─────────┐

│             Показатели                              │  СФ-2   │

├─────────────────────────────────────────────────────┼─────────┤

│1.Плотность с фольгой, г/см 52 0                         │ 1,9-2,9 │

│2.Предел прочности на растяжение, кг/см 52 0             │  2000   │

│3.Удельное поверхностное электрическое сопротивление,│  10 510 0   │

│                                                 Ом  │         │

│4.Тангенс угла диэлектрических потерь при частоте    │   0,07  │

│                                               10 56 0Гц │         │

│5.Диэлектрическая проницаемость                      │    6    │

└─────────────────────────────────────────────────────┴─────────┘

 

 

     Размеры плат  не  рекомендуется  брать  более 240х360 мм при

обычных и 120х180 мм при малогабаритных деталях.  Это  связано  с

тем, что  при  больших габаритных размерах ПП увеличивается длина

печатного проводника, чем снижается его прочность, снижается сила

 

сцепления печатного  проводника  с  изоляционным материалом,  что

требуется затем дополнительное сцепление путем предусмотрения до-

полнителных контактных площадок и отверстий. Из-за этого увеличи-

ваются паразитные связи,  что неблагоприятно сказывается на пара-

метры устройства (помехи,  пульсации, паразитные связи, наводки и

т.д.). Одновременно  снижается  механическая  жесткость  печатной

платы.

     Для устранения этого эффекта рекомендуется  и  целесообразно

более квадратная и прямоугольная форма (рекомендуемое соотношение

сторон по ОСТ4 ГО.070.011 - 1:1; 1:2; 2:3; 2:5).

     Платы всех  размеров  рекомендуется  выполнять  с плотностью

монтажа, соответствующей классу А.  К этому классу относятся пла-

ты, у  которых ширина проводников и расстояние между ними в узких

местах находятся в пределах 0,5-0,6 мм.

     Принимается площадь всех элементов 80,6 см 52 0,  а коэффициенты

плотности монтажа равным 0,7,  получаем максимальную площадь  пе-

чатной платы равной 116 см 52 0.

     Исходя из особенностей конструкции блока,  а именно: ограни-

чение размеров в целях достижения наименьших габаритов микромоду-

ля, печатная плата модуля имеет размеры и форму,  изображенную на

рисунке

 

                       _Форма и размеры платы

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

     Зная габариты платы, можно перейти к компоновке элементов на

ПП с  учетом необходимых зазоров между элементами и рационального

их размещения, для снижения паразитных связей и наводок.

     Выбираем шаг   координатной  сетки  1,25  мм  согласно  ГОСТ

20317-62 и отраслевого стандарта ОСТ 4.ГО.070.011.

     Центры монтажных  и переходных отверстий расположены в узлах

координатной сетки.

.

                   РАСЧЕТ НАДЕЖНОСТИ МИКРОМОДУЛЯ.

 

     Надежность - свойство изделия сохранять свои параметры в за-

данных пределах  и в заданных условиях эксплуатации в течение оп-

ределенного промежутка времени.

     Общую надежность   можно  принимать  как  совокупность  трех

свойств: безотказность, восстанавливаемость, долговечность.

     Безотказность -  свойство системы непрерывно сохранять рабо-

тоспособность в течение заданного времени в определенных условиях

эксплуатации. Она  характеризуется закономерностями возникновения

отказов.

     Восстанавливаемость -  это приспособленность системы к обна-

ружению и устранению отказов с учетом качества технического обслу-

живания. Она характеризуется закономерностями устранения отказов.

     Долговечность - свойство системы длительно сохранять работо-

способность в определенных условиях. Количественно характеризуется

продолжительностью периода практического использования системы от

начала эксплуатации до момента технической и экономической целесо-

образности дальнейшей эксплуатации.

     Методы повышения надежности в зависимости от области их при-

менения можно разделить на три основные группы: производственная,

схемно-конструкторские, эксплуатационные.

     К производственным методам относятся:  получение  однородной

продукции, стабилизация технологии, анализ дефектов и механизмов

отказов, разработка методов  испытаний,  определение  зависимости

показаний надежности от интенсивности внешних воздействий.

     К схемно-конструкторским методам относятся:  выбор подходя-

щих условий нагрузки,  унификация узлов и элементов,  разработка

схем с допусками на отклонение параметров элементов, резервирова-

ние, контроль работы оборудования, введение запаса работы во вре-

мени.

     К эксплуатационным методам относятся: сбор информации надеж-

ности, увеличение интенсивности восстановления, профилактические

мероприятия, граничные испытания.

     Наиболее ответственным этапом по  удовлетворению  требований

эксплуатационной надежности является этап проектирования.

Насколько всесторонне учтены при проектировании  и  изготовлении

опытного образца условия производства и эксплуатации с точки зре-

ния безопасности в работе,  ремонтопригодности, долговечности ап-

паратуры, настолько последняя будет обладать эксплуатационной на-

 

дежностью.

     К критериям безопасности относятся:  вероятность безотказной

работы, частота отказов,  интенсивность отказов,  среднее  время

безотказной работы, наработка на отказ.

     Интенсивностью отказов называется отношение числа отказавших

изделий в единицу времени к среднему числу изделий,  продолжавших

исправно работать. Среднем временем безотказной работы называет-

ся арифметическое время исправной работы каждого изделия.  В тео-

рии вероятности применяются различные законы распределения.  Наи-

более простым  распределением  потока отказов во времени является

эксплуатационный закон распределения,  который рассматривает пос-

ледовательность отказов во времени, как простейший поток событий.

     Расчет вероятности безотказной работы,  когда  отказы  комп-

лектующих элементов  распределяются  по  экспоненциальному закону

производится по следующим формулам:

 

     P(t) = e 5  t  77 5  0e 5  0  5-t 77 0... 77 0e   5 -t

 

     где - 7lS 0 - суммарная интенсивная отказов РЭА,

           7l 4i  0- интенсивность отказов комплектующих изделий и эле-

ментов.

 

     Интенсивность отказов комплектующих элементов с учетом усло-

вий эксплуатаций производится по формуле:

 

                            7l 0 =  7l 4p 7 7 0 K 4B

 

     K 4B 7  0- коэффициент, учитывающий условия эксплуатации элементов

для каждой группы аппаратуры. Для наземной стационарной и возимой