_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Знают где проколоть уши Челябинске - http://j-salon.ru/cosmet/earspiercing, отличные мастера.
Студентам


Студентам > Курсовые > Расчет элементов высокочастотной коррекции усилительных каскадов

Расчет элементов высокочастотной коррекции усилительных каскадов

Страница: 4/8

         ;                                                 (4.18)

;                                                                          (4.19)

 – входное сопротивление и емкость нагружающего каскада;

* и  рассчитываются по (2.3) и (2.4).

При заданном значении , значение  определяется выражением:

,                 (4.20)

Подставляя известные  и  в (4.12) найдем:

,                    (4.21)

где    .

Входное сопротивление и входная емкость каскада рассчитываются по соотношениям (4.10) и (4.11).

Пример 4.2. Рассчитать , , , ,  промежуточного каскада с эмиттерной коррекцией, схема которого приведена на рис. 4.2, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 0,9; =10; ,  нагружающего каскада - из примера 4.1; .

Решение. По известным ,  и  из (4.13) получим: = 28,5. Подставляя  в (4.15) найдем: = 29 Ом. Рассчитывая по формуле (4.19) значение n и подставляя его в (4.20) определим: = 0,76. Зная , по (4.16) и (4.17) рассчитаем: = 201 пФ. По известным , , ,  и  из (4.21) найдем: = 284 МГц. По формулам (4.10), (4.11) определим: = 44 пФ; =3590 Ом.

 

5. КОРРЕКЦИЯ ИСКАЖЕНИЙ ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ

 

5.1. РАСЧЕТ ИСКАЖЕНИЙ ВНОСИМЫХ ВХОДНОЙ ЦЕПЬЮ

 

Принципиальная схема входной цепи каскада приведена на рис. 5.1,а, эквивалентная схема по переменному току - на рис. 5.1,б.

                                      а)                                                               б)

Рис. 5.1

 

При условии аппроксимации входного сопротивления каскада параллельной RC-цепью, коэффициент передачи входной цепи в области верхних частот описывается выражением [1]:

,

где    ;                                                                           (5.1)

         ;                                                                                       (5.2)

         ;

          – входное сопротивление и входная емкость каскада.

Значение  входной цепи рассчитывается по формуле (2.5), где вместо  подставляется величина .

Пример 5.1. Рассчитать  и  входной цепи, схема которой приведена на рис. 5.1, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 50 Ом и = 0,9.

Решение. Из примера 2.1 имеем: = 126 Ом, = 196 пФ. Зная  и  из (5.1) получим: = 0,716. По (5.2) найдем: = 7×10-9 с. Подставляя известные  и  в (2.5) определим: = 11 МГц.

 

5.2. РАСЧЕТ ВХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ

 

Из приведенных выше примеров расчета видно, что наибольшие искажения АЧХ обусловлены входной цепью. Для расширения полосы пропускания входных цепей в [7] предложено использовать схему, приведенную на рис. 5.2.

                                      а)                                                               б)

Рис. 5.2

Работа схемы основана на увеличении сопротивления цепи  с ростом частоты усиливаемого сигнала и компенсации, благодаря этому, шунтирующего действия входной емкости каскада. Коэффициент передачи входной цепи в области верхних частот можно описать выражением [1]:

,

где    ;                                                                                              (5.3)

         ;

         ;

         ;

                                                                                                    (5.4)

          – входное сопротивление и входная емкость каскада.

Значение , соответствующее оптимальной по Брауде АЧХ, рассчитывается по формуле:

.                      (5.5)

При заданном значении  и расчете  по (5.5) верхняя частота полосы пропускания входной цепи равна:

,                          (5.6)

где    .

Пример 5.2. Рассчитать , ,  входной цепи, приведенной на рис. 5.2, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 50 Ом, = 0,9, допустимое уменьшение  за счет введения корректирующей цепи – 5 раз.

Решение. Из примера 5.1 имеем: = 126 Ом, = 196 пФ, = 0,716. Используя соотношение (5.3) и условия задачи получим: = 10 Ом. Подставляя  в (5.5) найдем: = 7,54 нГн. Подставляя результаты расчетов в (5.6), получим: = 108 МГц. Используя соотношения (5.4), (2.5) определим, что при простом шунтировании каскада резистором = 10 Ом  каскада оказывается равной 50 МГц.

 

5.3. РАСЧЕТ КАСКАДА С ПАРАЛЛЕЛЬНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ

 

Для исключения потерь в усилении, обусловленных использованием входной корректирующей цепи (см. раздел 5.2), в качестве входного каскада может быть использован каскад с параллельной ООС. Принципиальная схема каскада приведена на рис. 5.3,а, эквивалентная схема по переменному току - на рис. 5.3,б.

                                      а)                                                               б)

Рис. 5.3

 

Особенностью схемы является то, что при большом значении входной емкости нагружающего каскада и глубокой ООС ( мало) в схеме, даже при условии = 0, появляется выброс на АЧХ в области верхних частот. Поэтому расчет каскада следует начинать при условии:= 0. В этом случае коэффициент передачи каскада в области верхних частот описывается выражением:

,                                       (5.7)

где    ;                                                                                         (5.8)

;

;

;

 – входное сопротивление и емкость нагружающего каскада.

При заданном значении ,  каскада равна:

,             (5.9)

где    .

Формулой (5.9) можно пользоваться в случае, если . В случае  схема имеет выброс на АЧХ и следует увеличить . Если окажется, что при   меньше требуемого значения, следует ввести . В этом случае коэффициент усиления каскада в области верхних частот описывается выражением:

,                    (5.10)

где    ;                                                                                       (5.11)

         ;

        

         ;

;

.

Оптимальная по Брауде АЧХ достигается при условии:

.                        (5.12)

При заданном значении ,  каскада может быть найдена после нахождения действительного корня  уравнения:

,            (5.13)

где .

При известном значении ,  каскада определяется из условия:

.                                                                  (5.14)

Пример 5.3. Рассчитать , ,  каскада с параллельной ООС, схема которого приведена на рис. 5.3, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 50 Ом, = 0,9, = 1,5,  нагружающего каскада – из примера 4.2 (= 44 пФ, = 3590 Ом).

Решение. По известным  и  из (5.11) определим =75 Ом. Рассчитывая  и  формулы (5.7) найдем, что . Поэтому следует увеличить значение . Выберем = 6. В этом случае из (5.11) определим: = 150 Ом. Для данного значения  . По формуле (5.9) получим: = 76 МГц. Для расширения полосы пропускания рассчитаем  по (5.12): =57 нГн. Теперь найдем действительный корень уравнения (5.13): , и по (5.14) определим: = 122 МГц.

 

6. СОГЛАСОВАННЫЕ КАСКАДЫ С ОБРАТНЫМИ СВЯЗЯМИ

 

6.1. РАСЧЕТ КАСКАДА С КОМБИНИРОВАННОЙ ООС

 

Принципиальная схема каскада с комбинированной ООС приведена на рис. 6.1,а, эквивалентная схема по переменному току - на рис. 6.1,б.

                            а)                                                               б)

Рис.6.1

 

Совместное использование параллельной ООС по напряжению и последовательной ООС по току позволяет стабилизировать коэффициент усиления каскада, его входное и выходное сопротивления. При условии >> и выполнении равенств:

                                        (6.1)

схема оказывается согласованной по входу и выходу с КСВН не более 1,3 в диапазоне частот, где выполняется условие ³ 0,7. Поэтому взаимное влияние каскадов друг на друга при их каскадировании отсутствует [8].

При выполнении условий (6.1), коэффициент передачи каскада от генератора в нагрузку в области верхних частот описывается выражением:

,                                 (6.2)

где    ;                                                                 (6.3)

;

;

;

.

Задаваясь значением , из (6.1) и (6.3) получим:

.                             (6.4)

При заданном значении ,  каскада равна:

,               (6.5)

где    .

В [9] показано, что при выполнении условий (6.1) ощущаемое сопротивление нагрузки транзистора каскада с комбинированной ООС равно , а максимальная амплитуда сигнала, отдаваемого каскадом в нагрузку, составляет величину:

,                        (6.6)

где    - максимальное значение выходного напряжения отдаваемого транзистором.

Пример 6.1. Рассчитать , ,  каскада приведенного на рис. 6.1, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 50 Ом; =0,9; =3.

Решение. По известным  и  из (6.4) получим: =200 Ом. Подставляя  в (6.1) найдем: =12,5 Ом. Рассчитывая коэффициенты ,  формулы (6.2) и подставляя в (6.5) определим: =95 МГц. Теперь по (6.6) можно найти величину потерь выходного сигнала, обусловленных использованием ООС: .

 

6.2. РАСЧЕТ КАСКАДОВ С ПЕРЕКРЕСТНЫМИ ООС

 

Принципиальная схема каскадов с перекрестными ООС приведена на рис. 6.2,а, эквивалентная схема по переменному току - на рис. 6.2,б.

                                      а)                                                      б)

Рис. 6.2

 

По идеологии построения рассматриваемая схема похожа на усилитель, в котором использованы каскады с комбинированной ООС. Однако при заданном коэффициенте усиления схема обладает большей полосой пропускания, которая практически не сокращается при увеличении числа каскадов, что объясняется комплексным характером обратной связи на высоких частотах.

Усилитель с перекрестными ООС, также как и каскад с комбинированной ООС, при выполнении равенств (6.1) оказывается согласованной по входу и выходу с КСВН не более 1,3 [8, 9]. Коэффициент передачи двухтранзисторного варианта усилителя, изображенного на рис. 6.2, выполненного на однотипных транзисторах и при пренебрежении величинами второго порядка малости, описывается выражением:

,                                 (6.7)

где    ;                                                                                   (6.8)

 = 2;

;

;

При заданном значении ,  каскада равна:

,               (6.9)

где    .

Величина потерь выходного сигнала, обусловленных использованием ООС, определяется соотношением (6.6).

При увеличении числа каскадов, верхняя граничная частота всего усилителя  практически не меняется и может быть рассчитана по эмпирической зависимости:

,

где    - общее число каскадов;

 - верхняя частота полосы пропускания двухтранзисторного варианта усилителя, рассчитываемая по формуле (6.9).

Коэффициент усиления n-каскадного усилителя рассчитывается по формуле (6.8).

Пример 6.2. Рассчитать , ,  двухтранзисторного варианта усилителя приведенного на рис. 6.2, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: =50 Ом; =0,81; =10.

Решение. Подставляя в (6.8) заданные значения  и  найдем: = 160 Ом. Подставляя  в (6.1) получим: =15,5 Ом. Теперь по (6.9) определим: =101 МГц.

 

6.3. РАСЧЕТ КАСКАДА СО СЛОЖЕНИЕМ НАПРЯЖЕНИЙ

 

Принципиальная схема каскада со сложением напряжений [10] приведена на рис. 6.3,а, эквивалентная схема по постоянному току – на рис. 6.3,б, по переменному току – на рис. 6.3,в.

                            а)                                   б)                                  в)

Рис. 6.3

 

При выполнении условия:

,                                        (6.10)

напряжение, отдаваемое транзистором каскада, равно амплитуде входного воздействия. Коэффициент усиления по току транзистора включенного по схеме с общей базой равен единице. В этом случае ток, отдаваемый предыдущим каскадом, практически равен току нагрузки. Поэтому ощущаемое сопротивление нагрузки каскада равно половине сопротивления , его входное сопротивление также равно половине сопротивления, вплоть до частот соответствующих = 0,7. Это следует учитывать при расчете рабочих точек рассматриваемого и предоконечного каскадов.

Коэффициент усиления каскада в области верхних частот, с учетом выполнения равенства (6.10), описывается выражением:

,

где   

;

;

;

;

.

Оптимальная по Брауде АЧХ каскада реализуется при расчете  и  по формулам [10]:

;                                                   (6.11)

,                                              (6.12)

а значение  определяется из соотношения:

.                      (6.13)

Пример 6.3. Рассчитать , ,  каскада со сложением напряжений приведенного на рис. 6.3, при использовании транзистора КТ610А (данные транзистора приведены в примере 2.1) и условий: = 50 Ом; = 0,9.

Решение. По формулам (6.11), (6.12) получим = 3 кОм; = 10,4 пФ. Теперь по (6.13) найдем: =478 МГц.

 

7. РАСЧЕТ КАСКАДОВ С ЧЕТЫРЕХПОЛЮСНЫМИ КОРРЕКТИРУЮЩИМИ ЦЕПЯМИ

 

В рассматриваемых выше усилительных каскадах расширение полосы пропускания было связано с потерей части выходной мощности в резисторах корректирующих цепей, либо цепей ООС. Этого недостатка лишены усилители, построенные по принципу последовательного соединения корректирующих цепей (КЦ) и усилительных элементов [2]. В этом случае расчеты входных, выходных и межкаскадных КЦ ведутся с использованием эквивалентной схемы замещения транзистора приведенной на рис. 1.2, а в цепи коллектора вместо резистора  устанавливается дроссель , исключающий потери мощности в коллекторной цепи.

Пример построения схемы усилителя с КЦ приведен на рис. 7.1, где ВхКЦ – входная КЦ, МКЦ – межкаскадная КЦ, ВыхКЦ – выходная КЦ.

Рис. 7.1

 

7.1. РАСЧЕТ ВЫХОДНОЙ КОРРЕКТИРУЮЩЕЙ ЦЕПИ

 

Из теории усилителей известно [3], что для получения максимальной выходной мощности в заданной полосе частот необходимо реализовать ощущаемое сопротивление нагрузки, для внутреннего генератора транзистора, равное постоянной величине во всем рабочем диапазоне частот. Это достигается включением выходной емкости транзистора (см. рис. 1.2) в фильтр нижних частот, используемый в качестве выходной КЦ. Схема включения выходной КЦ приведена на рис. 7.2.

Рис. 7.2

 

При работе усилителя без выходной КЦ, модуль коэффициента отражения || ощущаемого сопротивления нагрузки внутреннего генератора транзистора равен [3]:

|| = ,                                          (6.14)

где  - текущая круговая частота.

В этом случае уменьшение выходной мощности относительно максимального значения, обусловленное наличием , составляет величину:

,                                            (6.15)

где    - максимальное значение выходной мощности на частоте  при условии равенства нулю ;

 - максимальное значение выходной мощности на частоте  при наличии.

Описанная в [3] методика Фано позволяет при заданных  и  рассчитать такие значения элементов выходной КЦ  и , которые обеспечивают минимально возможную величину максимального значения модуля коэффициента отражения в полосе частот от нуля до . В таблице 7.1 приведены нормированные значения элементов , , , рассчитанные по методике Фано, а также коэффициент, определяющий величину ощущаемого сопротивления нагрузки  относительно которого вычисляется .

Истинные значения элементов рассчитываются по формулам:

                                              (6.16)

где    - верхняя круговая частота полосы пропускания усилителя.

 

Таблица 7.1 - Нормированные значения элементов выходной КЦ

0,1

0,2

0,3

0,4

0,5

0,180

0,382

0,547

0,682

0,788

0,099

0,195

0,285

0,367

0,443

0,000

0,002

0,006

0,013

0,024

1,000

1,001

1,002

1,010

1,020

0,6

0,7

0,8

0,9

1,0

0,865

0,917

0,949

0,963

0,966

0,513

0,579

0,642

0,704

0,753

0,037

0,053

0,071

0,091

0,111

1,036

1,059

1,086

1,117

1,153

1,1

1,2

1,3

1,4

1,5

0,958

0,944

0.927

0,904

0,882

0,823

0,881

0,940

0,998

1,056

0,131

0,153

0,174

0,195

0,215

1,193

1,238

1,284