Студентам > Рефераты > Исполнительные и логические устройства
Исполнительные и логические устройстваСтраница: 1/6
Содержание
Содержание. 2
Введение. 3
Параметры логических интегральных микросхем. 4
Диодно-транзисторная логика. 4
Транзисторно-транзисторные логические элементы. 6
Базовые логические элементы эмиторно-связной логики. 10
ПРИНЦИП ДЕЙСТВИЯ И ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ БЛЭ ЭСЛ. 12
Схемотехника БЛЭКМОП-типа. 14
БЛЭ Интегрально-инжекционной логики. 16
Исполнительные устройства. 18
Список используемой литературы . 20 Введение.
Автоматика, отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле - совокупность методов и технических средств, исключающих участие человека при выполнении операций конкретного процесса. Как самостоятельная область техники автоматизация получила признание на 2-й Мировой энергетической конференции (Берлин, 1930), где была создана секция по вопросам автоматического и телемеханического управления. В СССР термин "Автоматизация " получил распространение в начале 30-х гг.
Автоматизации как наука возникла на базе теории автоматического регулирования, основы которой были заложены в работах Дж. К. Максвелла (1868), И. А. Вышнеградского (1872-1878), А. Стодолы (1899) и др.; в самостоятельную научно-техническую дисциплину окончательно оформилась к 1940. История автоматизации как отрасли техники тесно связана с развитием автоматов, автоматических устройств и автоматизированных комплексов. В стадии становления автоматизации опиралась на теоретическую механику и теорию электрических цепей и систем и решала задачи, связанные с регулированием давления в паровых котлах, хода поршня паровых и частоты вращения электрических машин, управления работой станков-автоматов, АТС, устройствами релейной защиты. Соответственно и технические средства автоматизации в этот период разрабатывались и использовались применительно к системам автоматического регулирования. Интенсивное развитие всех отраслей науки и техники в конце первой половины 20 века вызвало быстрый рост техники автоматического управления, применение которой становится всеобщим.
Вторая половина 20 века ознаменовалась дальнейшим совершенствованием технических средств автоматизации и широким, хотя и неравномерным для разных отраслей народного хозяйства, распространением автоматических управляющих устройств с переходом к более сложным автоматическим системам, в частности в промышленности - от автоматизации отдельных агрегатов к комплексной автоматизации цехов и заводов.
Существенной чертой является использование автоматизации на объектах, территориально расположенных на больших расстояниях друг от друга, например крупные промышленные и энергетические комплексы, системы управления космическими летательными аппаратами и т. д. Для связи между отдельными устройствами в таких системах применяются средства телемеханики, которые совместно с устройствами управления и управляемыми объектами образуют телеавтоматические системы. Большое значение при этом приобретают технические (в т. ч. телемеханические) средства сбора и автоматической обработки информации, т. к. многие задачи в сложных системах автоматического управления могут быть решены только с помощью вычислительной техники. Наконец, теория автоматического регулирования уступает место обобщённой теории автоматического управления, объединяющей все теоретические аспекты автоматизации и составляющей основу общей теории управления.
В большинстве современных ЭВМ и цифровых устройствах различного назначения обработка информации происходит с помощью двоичного кода, когда информационные сигналы могут принимать только два значения: 1 и 0. Операции по обработке двоичной информации выполняют логические элементы.
Используя набор логических элементов, выполняющие элементарные логические операции И, ИЛИ, НЕ, можно реализовать в двоичном коде любую сложную логическую функцию. Параметры логических интегральных микросхем.
1 Входное U1вх и выходное U1вых напряжение логической единицы – значение высокого уровня напряжения на входе и выходе микросхемы;
2 Входное U0вх и выходное U0вых напряжение логического нуля – значение низкого уровня напряжения на входе и выходе микросхемы;
3 Входной I1вх и выходной I1вых токи логической единицы, входной I0вх и выходной I0вых токи логического нуля;
4 Логический период сигнала , пороговое напряжение Uпор вх – напряжение на входе, при котором состояние микросхемы изменяется на противоположное;
5 Входное сопротивление логической ИМС – отношение приращения входного напряжения к приращению входного тока (различают R0вх и R1вх), выходное сопротивление – отношение приращения выходного напряжения к приращения выходного тока (различают R0вых и R1вых);
6 Статическая помехоустойчивость – максимально допустимое напряжение статической помехи по высокому U1пом и низкому U0пом уровням входного напряжения, при котором еще не происходят изменения уровня выходного напряжения микросхемы;
7 Средне потребляемая мощность Pпотр ср = (P0потр + Р1потр)/2 , где P0потр и Р1потр – мощности, потребляемые микросхемой в состоянии соответственно логического нуля и единицы на выходе;
8 Коэффициент объединения по входу Коб, показывающий, какое число аналогичных логических ИМС можно подключить к входу данной схемы, и определяющий максимальное число входов логической ИМС;
Коэффициент разветвления по входу Кразв, показывающий какое количество аналогичных нагрузочных микросхем можно подключить к выходу данной ИМС, и характеризующий нагрузочную способность логической ИМС. Классические виды логических элементов.
Наиболее распространенный тип интегральных микросхемы – аналоговые. Их ассортимент необычайно широк и разнообразен, но основное поле деятельности в звуковой технике (усилители и т.д.), поскольку они оперируют сигналами, уровень которых может меняться плавно, непрерывно, приобретая в процессе этих изменений бессчётное множество разных значений.
Дискретные (цифровые) применяются в компьютерных областях, там где нужны быстрые и чёткие сигналы. Диодно-транзисторная логика.
Одним из первых семейств цифровой логики мы рассмотрим диодно-транзисторную логику. Основная схема ДТЛ приведена в соответствии с рисунком 1а. Если отбросит часть схемы, изображенную пунктиром, схема превращается в инвертор, и по ней можно построить передаточную характеристику Ux от Ua. Если напряжение на входе А равно 0, то диод VD1 смещен в прямом направлении и напряжение U1 равно +0,6 В. Эта величина недостаточна для открывания диодов VD2 и VD3 и перехода база-эмиттер транзистора VТ1. Поэтому ток i1 течет через диод VD1, источник напряжения Ua и на землю. Транзистор VТ1 закрыт, при этом Ux = +5 В. Если Ua увеличивается, то U1 также растет до тех пор, пор пока не достигнет 1,2 В. При этом U1 = 1,8 В. В этот момент VD2, VD2, VТ1 открываются и ток i1 течет через транзистор VТ1 и переводит его в насыщение. Дальнейшее увеличение напряжение Ua запирает диод VD1. но не может повлиять на величину U1 или состояние транзистора VТ1. Это относительно резкое изменение величины напряжение Ux от +0,5 В до величены на насыщенном транзисторе Uкэ нас приведено, в соответствии с рисунком 1б. Из графика видно, что интервалы напряжений, соответствующие логическим состояниям 0 и 1, примерно равны
|