Студентам > Курсовые > Алмазоподобные полупроводники
Алмазоподобные полупроводникиСтраница: 7/8
Для производства продуктов с малым содержанием окислов синтез проводится путем взаимодействия соответствующих металлов II группы серо- и селеноводородом. Выращивание монокристаллов тугоплавких соединений типа АIIВVI в большинстве случаев осуществляется перекристаллизацией предварительно синтезированного соединения через паровую фазу в запаянных кварцевых ампулах.
Твердые растворы на основе соединений АIII ВV . Твердые растворы существенно расширить по сравнению с элементарными полупроводниками и полупроводниковыми соединениями набор электрофизических параметров, определяющих возможности применения материалов в конкретных полупроводниковых приборах.
Среди алмазоподобных полупроводников, в том числе соединений типа А В , распространены твердые растворы замещения. Необходимыми условиями образования твердых растворов являются кристаллохимическое подобие кристаллических решеток соединений-компонентов и близость их периодов идентичности. Наиболее хорошо изучены тройные твердые растворы, в которых замещение происходит лишь по узлам одной из подрешеток бинарного соединения (металлической или металлоидной). Состав таких твердых растворов принято характеризовать символами АхВ1-хС и АСуD1-у, где А и В обозначают элементы III группы, а С и D- элементы V группы. В формуле АхВ1-хС индекс х определяет мольную долю соединения АВ в твердом растворе. Если твердые растворы существуют во всем диапазоне концентраций, то х может изменяться от 0 до 1. В тройных твердых растворах имеет место статистически неупорядоченное распределение атомов замещаемых компонентов по узлам соответствующей подрешетки. С изменением состава твердого раствора наблюдается линейное изменение периода кристаллической решетки. Эта закономерность известна в кристаллохимии как закон Вегарда. Она позволяет определять состав твердого раствора по изменениям периода решетки с помощью дифракции рентгеновских лучей.
Как в бинарных соединениях АIIIВV, в твердых растворах не наблюдается существенных отклонений от стехиометрии, поэтому они просты по механизму легирования. Теми же методами, что и в бинарных соединениях, в них могут быть получены электронно-дырочные переходы. Температурные изменения электрических параметров также принципиально не отличаются от соответствующих зависимостей для соединений-партнеров.
Особый интерес к твердым растворам обусловлен возможностью плавного управления шириной запрещенной зоны полупроводников путем изменения их компонентного состава. Возможные варианты этих зависимостей показаны на рис.5
а) б) Рис.5 Зависимость ширины запрещенной зоны от состава твердых растворов на основе соединений АIIIВV (Т=300К) а-соединения-партнеры имеют одинаковую зонную структуру;
б-соединения-партнеры имеют различную зонную структуру.
Как видно из рисунка, зависимость ширины запрещенной зоны от состава в некоторых системах твердых растворов (Gaу In1-х As; InPу As1-у) очень близка к линейной, но может и существенно отличаться от нее, проявляя экстремум или излом при определенном соотношении между компонентами. Конкретный характер зависимости во многом определяется типом зонной структуры соединений-партнеров, т. е. положением
их энергетических долин в
пространстве квазиимпульсов (k-пространстве).
В частности, излом зависимости ∆Э(х)
наблюдается в тех системах твердых
растворах, в которых исходные
бинарные соединения имеют зонные
структуры различных типов, т. е.
различное расположение главных
энергетических минимумов зоны проводимости
в k-пространстве.
Подвижность носителей заряда
в полупроводниковых твердых растворах
в основном ограничивается теми же факторами,
что и в бинарных соединениях. Подтверждение
этому могут служить зависимости, показанные
на рис.6.
Рис.6 Зависимость под-
вижности электронов в твер-
дых растворах GaхIn1-хSb и
InPуAs1-у от состава (Т=300К)
Отсутствие экстремума в ходе кривых указывает на то, что в общем механизме рассеяния носителей заряда доля рассеяния на статистических неоднородностях структуры материала относительно мала. В противном случае должен был бы наблюдаться минимум подвижности носителей для твердых растворов с составом, близким к х=0,5. Отмеченная закономерность в поведении носителей заряда отличает полупроводниковые твердые растворы от металлических сплавов, в которых рассеяние электронов на статистических неоднородностях структуру играет весьма существенную роль.
Вместе с тем, как и в металлических сплавах, эффекты статистического разупорядочения в кристаллической решетке оказывают сильное влияние на удельную теплопроводность полупроводников, которая у твердых растворах оказывается заметно ниже, чем у бинарных соединений. Например, у твердых растворов GaAs0,5P0,5 и Al0,5Ga0,5As значение удельной теплопроводности примерно на порядок меньше, чем у чистых кристаллов GaAs.
Изменение ширины запрещенной зоны у твердых растворов сопровождается соответствующим смещением спектров оптического поглощения и пропускания, люминесценции и фоточувствительности. С изменением состава твердого раствора изменяются значения диэлектрической проницаемости и показателя преломления, происходит смещение примесных энергетических уровней. В ряде систем при определенном соотношении между компонентами можно получить качественное новое сочетание свойств. Так, в твердых растворах GaAs1-уPу и AlхGa1-хAs (с х и у порядка 0,3 ÷ 0,4) сочетаются достаточно широкая запрещенная зона ( ∆Э>1,7эВ) с высоким квантовыми выходом межзонной излучательной рекомбинации. Такие материалы используют для создания эффективных электролюминесцентных источников красного излучения (светодиодов и лазеров). Твердые растворы
GaхIn1-хP c х=0,5-0,7 обладают эффективной люминесценцией в желто-зеленой области спектра.
Получение однородных твердых растворов заданного состава представляет собой весьма трудную технологическую задачу. Обычными методами кристаллизации из расплава в лучшем случае удается получать однородные поликристаллические слитки. Монокристаллические слои твердых растворов, используемых в приборных структурах, осаждают исключительно методами эпитаксии. Эпитаксию твердых растворов GaAs1-уPу осуществляют на подложках GaAs или GaP с помощью химических реакций, протекающих в газовой фазе. В то же время наиболее совершенные эпитаксиальные слои AlхGa1-хAs, AlхGa1-хSb,
GaхIn1-хAs, GaхIn1-хP получают методом жидкофазовой эпитаксии с использованием галлия или индия в качестве растворителя.
Твердые растворы открывают широкие возможности создания гетеропереходов и приборов на их основе. Под гетеропереходом понимают контакт двух полупроводников с различной шириной запрещенной зоны. Для получения гетеропереходов со свойствами идеального контакта необходимо выполнить ряд условий совместимости материалов по механическим, кристаллохимическим и термическим свойствам. Решающим критерием при выборе материалов контактной пары является соответствие периодов их кристаллических решеток и температурных коэффициентов линейного расширения. Если компоненты гетерпары обладают взаимной растворимостью во всем интервале концентраций, то появляется уникальная возможность создавать гетеропереходы между химическим соединением АС и твердым раствором
|