_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Пушки Пирса с параллельным пучком

Пушки Пирса с параллельным пучком

Страница: 2/8

Поэтому существует необходимость разработки методов, позволяющих либо аналити­чески рассчитать конструкцию электродов, либо представить задачу в форме, поддающейся непосредственному численному решению. В данной главе излагается несколько различных ме­тодов решения. Уравнения для требуемой потенциальной функ­ции выводятся в ходе обсуждения этих методов. Некоторое вни­мание уделено также численным способам решения, которые приходится использовать для определения конфигурации элек­тродов. Так, например, метод Харкера, приводит к гиперболическому дифференциальному уравнению в частных производных. Решение такого дифференциального урав­нения путем перехода к разностным уравнениям достаточно пол­но описано в книгах по численным методам.

Чисто теоретические решения дают конфигурацию электро­дов, из которых практически трудно изготовить нужные системы формирования. Задачу отыскания более приемлемых в практи­ческом отношении конфигураций электродов лучше решать при­ближенными, чем точными аналитическими методами. Такие приближенные методы рассматриваются в следующих двух гла­вах. Как правило, точные теоретические методы удобнее при­менять к сложным уравнениям; приближенные же методы эф­фективнее при более сложных граничных условиях. Предприни­мались попытки решить внутренние граничные задачи, прибегая к анализу Фурье в одномерном направлении. Положительные результаты достигались при этом только в случае прямоуголь­ных или других простых границ. Рассчитать же электроды точ­ными теоретическими методами так, чтобы поля в окрестности пучка не изменялись, весьма затруднительно.

Из неустойчивости решений уравнений Лапласа и Пуассона при граничных условиях Коши вытекает еще одно следствие. В высокопервеансных электронных пушках длина пушки имеет тот же порядок величины, что и ширина. Теоретически рассчи­танные электроды обычно проходят через поток, что возможно практически только при использовании сеток. Но во многих при­менениях сетки использовать нельзя, так как они перехватывают часть электронов и имеют низкую теплопроводность, вследствие чего при больших мощностях сетки легко могут расплавиться. Более того, чтобы точно синтезировать потенциалы в сечении потока, сетка должна быть мелкоструктурной, что усугубляет проблему токораспределения. Но и в случае использования се­ток любое отклонение формы электродов от теоретической, вы­зывающее лишь небольшие изменения на границе потока, может сильно повлиять на поле внутри потока и привести к серьезным ошибкам в оценке электронной эмиссии катода.

2. Общая схема системы формирования интенсивных электронных пучков.

Практически в любом случае систему, формирующую электронный пучок, можно, хотя и несколько условно, разделить на четыре основные (рис. 1) области:

Рис. 1. Общая схема системы фор­мирования электронных пучков.

I — область электронной пушки, состоящей из катода 1, фокусирующего электрода 2 и анода 3, в электрическом поле, которой, происходит первоначальное формирование пучка.

II — область пролетного канала (пролетной трубы) 4, в котором могут располагаться резонаторы, например в случае клистрона, или отклоняющие устрой­ства, например в случае сварочной установки. В этой же области располагается в случае необходимости и так на­зываемая поперечно-ограничивающая, «фоку­сирующая» система 5. Конструкции таких систем доволь­но многообразны. В частности, она может представлять собой длинный соленоид. Ее назначение — создать маг­нитное или электрическое поле, препятствующее расши­рению электронного пучка в пролетной трубе.

В случае достаточно большой длины пучка это очень важно, что бы не допу­стить оседания значи­тельной части тока пуч­ка на стенках трубы, т. е. обеспечить хоро­шее токопрохождение. В частном случае (на­пример, отражатель­ные клистроны) этой системы может и не быть.

III — приемник или коллектор пучка 6, кото­рый может быть как «пассивным», т. е. служить подобно аноду в электронной лампе для отвода электронов пучка из прибора, так и «активным». В последнем случае ос­новной эффект, ради которого создается прибор и фор­мируется пучок, происходит именно на приемнике, на­пример плавка или сварка.

И, наконец, IV область — переходная между пуш­кой и поперечно-ограничивающей системой, поля в кото­рой должны быть такими, чтобы обеспечить согласован­ное действие I и II областей. Как правило, переходная область является важнейшей с точки зрения формиро­вания пучка, хотя, в случае если поле поперечно-ограни­чивающей («фокусирующей») системы простирается до катода пушки, этой области может и не быть.

2.1. Основные типы пучков

Конфигурация встречающихся на практике пучков может быть весьма разнообразной. Однако, хотя и не­сколько условно, можно из них выделить пучки наибо­лее типичной формы. В первую очередь это сплошные аксиально-симметричные пучки, поперечное сечение ко­торых имеет вид круга. Такие пучки могут быть как цилиндрическими (рис. 2-а), так и коническими, т. е. схо­дящимися (рис. 2-б).

Все больший интерес проявляется к трубчатым пуч­кам (цилиндрическим и коническим), поперечное сечение которых представляет собой кольцо (рис. 2-в, г).

Следует указать также на ленточные или плоские электронные пучки, сечение которых представляет собой прямоугольник, одна сторона которого значительно боль­ше другой. Такие пучки также могут быть параллельны­ми или сходящимися — клиновидными (рис. 2-д,е).

Рис. 2. Основные типы пучков.

Ввиду наибольшей распространенности ак­сиально-симметричных пучков в дальнейшем рассмотрении им будет уделено основное внима­ние. Другие типы пучков рассматриваются менее подробно. Ко всем типам пучков могут быть предъ­явлены некоторые общие требования, а именно:

1. Вполне определен­ный, часто возможно бо­лее высокий, микропервеанс, который в настоя­щее время достигает еди­ниц мка/в3/2. Это отра­жает стремление получить пучки с возможно большим током при пониженных напряжениях.

2. Форма пучка должна, возможно лучше соответст­вовать заданной для того, чтобы его можно было про­пустить через пролетную трубу без потерь тока и часто так, чтобы границы

пучка были возможно ближе к ее стенкам.

При рассмотрении пучков мы будем, за исключением специально оговоренных разделов, предполагать:

Параксиальность траекторий электронов в пуч­ке.

Ламинарноcть пучков. Это значит, что траекто­рии отдельных электронов в пучке не пересекаются и пу­чок в целом имеет четкую границу, очерченную траекто­риями крайних электронов. Равномерность распределения плотно­сти объемного заряда в пучке.