_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Пушки Пирса с параллельным пучком

Пушки Пирса с параллельным пучком

Страница: 5/8

Используя формулу для фокусного расстояния, можно вычис­лить угол наклона электронных траекторий на выходе из электрон­ной пушки a ≈ tg a ≈ . Для граничных электронов и потока (у = уп) получаем . Как следует из этого выражения, расфокусирующее действие анодного отверстия возрастает по мере увеличения отношения тол­щины потока к междуэлектродному расстоянию.

Влияние расфокусирующего дейст­вия анодного отверстия можно сущест­венно уменьшить, если закрыть его достаточно густой сеткой.

В этом случае преломление электронных траекторий будет определяться формулой:

где h — шаг сетки.

3.2. Формированиeпараллельного цилиндрического (осесимметричного) пучка.

Рис. 10. Схематическое изображение пушек Пирса для формирования

цилиндриче­ского пучка

На рис. 10 схематически изображена пушка Пирса для формирования параллельного цилинд­рического (осесимметричного) пучка.

Электронная система пушки состоит из катода, прикатодного фокусирующего электрода с потенциалом катода и анода с поло­жительным по отношению к катоду потенциалом.

При формировании параллельного пучка катод должен иметь плоскую форму, а прикатодный элек­трод вблизи катода — форму усеченного конуса с углом наклона образующей 67,5° к перпендикуляру, проведенному к краю катода.

Анод может быть либо плоским диском с отверстием, либо иметь выпуклую в сторону катода форму в соответствии с формой одной из эквипотенциальных поверхностей, удаленных от катода (см. рис. 11).

Рис. 11. Распределение потенциала вблизи цилиндрического пучка

Как видно из приведенного рисунка, эквипотенциальные по­верхности имеют довольно сложную форму и изготовление электро­дов в точном соответствии с рассчитанной конфигурацией приводит к техническим затруднениям. В то же время для формирования пучка решающее значение имеет распределение потенциала в не­посредственной близости к его границе. Исследования показали, что изменение электродов вдали от электронного потока мало ска­зывается на распределении потенциала вдоль его границы.

Практически вполне достаточно выдержать необходимое (совпадающее с расчетным) распределение потенциала на расстояниях одного-полутора диаметров пучка от его границы. Кроме того, следует учитывать, что наличие анодного отверстия приводит к появлению рассеивающей линзы в области анодного электрода. Для компенсации рассеивающего действия анодной линзы необходимо либо изменить форму анода, либо (чаще) поместить пушку в про­дольное магнитное поле. При наличии ограничивающего магнит­ного поля форма анодного электрода практически не влияет на кон­фигурацию пучка.

Приведенные соображения показывают, что при конструирова­нии пушек вполне возможно выбирать упрощенную форму элек­тродов, обеспечивающую необходимое распределение потенциала лишь вблизи границы пучка. Вдали от границы пучка форму элек­тродов выбирают исходя из конструктивных соображений: просто­ты изготовления, удобства крепления и т. д. Упрощенную форму электродов можно наиболее просто подобрать моделированием в электролитической ванне.

В качестве примера на рис. 5 показано сечение электродной системы, обеспечивающей у границы пучка пирсовское распределение потенциала.

Рис. 12. Упрощенная форма электродов пушки Пирса

Как видно из рисунка, форма электродов весьма далека от тео­ретической (идеальной).

Из аналитических расчетов следует, что нулевая эквипотенци­альная поверхность должна подходить к границе пучка у поверх­ности катода под углом 67,5°. Точное выполнение этого условия в практической конструкции пушки возможно лишь при изготовлении катода и прикатодного фокусирующего электрода в виде единой детали — усеченного конуса, меньшее отверстие которого закрыто катодом.

Однако такое решение неприемлемо по следующим при­чинам: фокусирующий электрод, имеющий металлический контакт с термокатодом, будет играть роль радиатора, отводящего тепло от периферийной зоны катода, и для поддержания рабочей тем­пературы катода, обеспечивающей необходимую величину тока эмиссии, потребуется существенное увеличение мощности подогре­вателя.

Кроме того, при работе катода имеет место миграция ак­тивного вещества (бария с оксидного катода) на поверхность фоку­сирующего электрода, что приводит к появлению паразитного тока электронной эмиссии с поверхности нагретого прикатодного элек­трода. Паразитный эмиссионный ток может существенно исказить распределение потенциала в прикатодной области и как следствие привести к заметному изменению условий формирования пучка.

Поэтому в практических конструкциях пушек между кромкой като­да и краем фокусирующего электрода обязательно должен быть хотя бы небольшой кольцевой зазор. Здесь возможно два конст­руктивных решения. При достаточно большом катоде отверстие в прикатодном электроде делается с радиусом, превышающим радиус катода на ширину зазора (рис. 6-а).

Рис. 13. Конструкции прикатодных электродов

В случае же малых катодов, когда для размещения подогревателя необходима полость с диа­метром, превышающим диаметр эмиттирующей части катода, фоку­сирующий электрод располагается перед катодом. В обоих случаях поле вблизи зазора искажается, эквипотенциаль­ные поверхности «провисают» в зазор. Это «провисание» поля при­водит к искривлению траекторий электронов, испускаемых периферийной частью катода.

Возмущение крайних траекторий полем зазора является очень нежелательным явлением, так как именно крайние электроны определяют конфигурацию пучка и оседание части электронного потока на электроды фокусирующей системы. Искажение поля вблизи зазора зависит не только от ширины са­мого зазора, но также от формы краев катода и фокусирующего электрода. Технологические скругления кромок приводят к увели­чению «провисания» поля и возмущению большей доли электронов.

Расчет показывает, что при ширине зазора 0,1 мм и радиусе скруг­ления кромки катода того же порядка доля возмущенных электро­нов может составить 10—15% от общего электронного потока, ухо­дящего с катода. Таким образом, при проектировании пушек не­обходимо стремиться к уменьшению ширины зазора и делать кромки электродов возможно более острыми.

Некоторое снижение доли возмущенных электронов удается получить путем подведения к фокусирующему электроду небольшого отрицательного относи­тельно катода коррегирующего напряжения. В этом случае у краев катода создается тормозящее поле, препятствующее уходу электро­нов с краев катода. Конечно, при этом несколько уменьшается общий ток пучка, однако регулировкой коррегирующего напряже­ния удается заметно уменьшить оседание электронов на положи­тельно заряженные электроды системы формирования.