Студентам > Курсовые > Пушки Пирса с параллельным пучком
Пушки Пирса с параллельным пучкомСтраница: 5/8
Используя формулу для фокусного расстояния, можно вычислить угол наклона электронных траекторий на выходе из электронной пушки a ≈ tg a ≈ . Для граничных электронов и потока (у = уп) получаем . Как следует из этого выражения, расфокусирующее действие анодного отверстия возрастает по мере увеличения отношения толщины потока к междуэлектродному расстоянию.
Влияние расфокусирующего действия анодного отверстия можно существенно уменьшить, если закрыть его достаточно густой сеткой.
В этом случае преломление электронных траекторий будет определяться формулой:
где h — шаг сетки.
3.2. Формированиeпараллельного цилиндрического (осесимметричного) пучка.
Рис. 10. Схематическое изображение пушек Пирса для формирования цилиндрического пучка
На рис. 10 схематически изображена пушка Пирса для формирования параллельного цилиндрического (осесимметричного) пучка.
Электронная система пушки состоит из катода, прикатодного фокусирующего электрода с потенциалом катода и анода с положительным по отношению к катоду потенциалом.
При формировании параллельного пучка катод должен иметь плоскую форму, а прикатодный электрод вблизи катода — форму усеченного конуса с углом наклона образующей 67,5° к перпендикуляру, проведенному к краю катода.
Анод может быть либо плоским диском с отверстием, либо иметь выпуклую в сторону катода форму в соответствии с формой одной из эквипотенциальных поверхностей, удаленных от катода (см. рис. 11). Рис. 11. Распределение потенциала вблизи цилиндрического пучка
Как видно из приведенного рисунка, эквипотенциальные поверхности имеют довольно сложную форму и изготовление электродов в точном соответствии с рассчитанной конфигурацией приводит к техническим затруднениям. В то же время для формирования пучка решающее значение имеет распределение потенциала в непосредственной близости к его границе. Исследования показали, что изменение электродов вдали от электронного потока мало сказывается на распределении потенциала вдоль его границы.
Практически вполне достаточно выдержать необходимое (совпадающее с расчетным) распределение потенциала на расстояниях одного-полутора диаметров пучка от его границы. Кроме того, следует учитывать, что наличие анодного отверстия приводит к появлению рассеивающей линзы в области анодного электрода. Для компенсации рассеивающего действия анодной линзы необходимо либо изменить форму анода, либо (чаще) поместить пушку в продольное магнитное поле. При наличии ограничивающего магнитного поля форма анодного электрода практически не влияет на конфигурацию пучка.
Приведенные соображения показывают, что при конструировании пушек вполне возможно выбирать упрощенную форму электродов, обеспечивающую необходимое распределение потенциала лишь вблизи границы пучка. Вдали от границы пучка форму электродов выбирают исходя из конструктивных соображений: простоты изготовления, удобства крепления и т. д. Упрощенную форму электродов можно наиболее просто подобрать моделированием в электролитической ванне.
В качестве примера на рис. 5 показано сечение электродной системы, обеспечивающей у границы пучка пирсовское распределение потенциала.
Рис. 12. Упрощенная форма электродов пушки Пирса
Как видно из рисунка, форма электродов весьма далека от теоретической (идеальной).
Из аналитических расчетов следует, что нулевая эквипотенциальная поверхность должна подходить к границе пучка у поверхности катода под углом 67,5°. Точное выполнение этого условия в практической конструкции пушки возможно лишь при изготовлении катода и прикатодного фокусирующего электрода в виде единой детали — усеченного конуса, меньшее отверстие которого закрыто катодом.
Однако такое решение неприемлемо по следующим причинам: фокусирующий электрод, имеющий металлический контакт с термокатодом, будет играть роль радиатора, отводящего тепло от периферийной зоны катода, и для поддержания рабочей температуры катода, обеспечивающей необходимую величину тока эмиссии, потребуется существенное увеличение мощности подогревателя.
Кроме того, при работе катода имеет место миграция активного вещества (бария с оксидного катода) на поверхность фокусирующего электрода, что приводит к появлению паразитного тока электронной эмиссии с поверхности нагретого прикатодного электрода. Паразитный эмиссионный ток может существенно исказить распределение потенциала в прикатодной области и как следствие привести к заметному изменению условий формирования пучка.
Поэтому в практических конструкциях пушек между кромкой катода и краем фокусирующего электрода обязательно должен быть хотя бы небольшой кольцевой зазор. Здесь возможно два конструктивных решения. При достаточно большом катоде отверстие в прикатодном электроде делается с радиусом, превышающим радиус катода на ширину зазора (рис. 6-а).
Рис. 13. Конструкции прикатодных электродов
В случае же малых катодов, когда для размещения подогревателя необходима полость с диаметром, превышающим диаметр эмиттирующей части катода, фокусирующий электрод располагается перед катодом. В обоих случаях поле вблизи зазора искажается, эквипотенциальные поверхности «провисают» в зазор. Это «провисание» поля приводит к искривлению траекторий электронов, испускаемых периферийной частью катода.
Возмущение крайних траекторий полем зазора является очень нежелательным явлением, так как именно крайние электроны определяют конфигурацию пучка и оседание части электронного потока на электроды фокусирующей системы. Искажение поля вблизи зазора зависит не только от ширины самого зазора, но также от формы краев катода и фокусирующего электрода. Технологические скругления кромок приводят к увеличению «провисания» поля и возмущению большей доли электронов.
Расчет показывает, что при ширине зазора 0,1 мм и радиусе скругления кромки катода того же порядка доля возмущенных электронов может составить 10—15% от общего электронного потока, уходящего с катода. Таким образом, при проектировании пушек необходимо стремиться к уменьшению ширины зазора и делать кромки электродов возможно более острыми.
Некоторое снижение доли возмущенных электронов удается получить путем подведения к фокусирующему электроду небольшого отрицательного относительно катода коррегирующего напряжения. В этом случае у краев катода создается тормозящее поле, препятствующее уходу электронов с краев катода. Конечно, при этом несколько уменьшается общий ток пучка, однако регулировкой коррегирующего напряжения удается заметно уменьшить оседание электронов на положительно заряженные электроды системы формирования.
|