_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств

Страница: 4/22

б)

а) в)

Рис. 2.2

Согласно [16, 17] при заданном значении нижней граничной частоты полосы пропускания разрабатываемого усилителя требуемое число витков длинных линий, наматываемых на ферритовые сердечники трансформатора, определяется выражением:

, (2.4)

где d – диаметр сердечника в сантиметрах;

N – количество длинных линий трансформатора;

*– относительная магнитная проницаемость материала сердечника;

S – площадь поперечного сечения сердечника в квадратных сантиметрах.

Значение коэффициента перекрытия частотного диапазона трансформирующих и суммирующих устройств на ферритовых сердечниках и длинных линиях лежит в пределах 2·104 .8·104 [16, 17]. Поэтому, приняв коэффициент перекрытия равным 5·104, верхняя граничная частота полосы пропускания трансформатора может быть определена из соотношения:

(2.5)

При расчетах трансформаторов импедансов по соотношениям (2.4) и (2.5) следует учитывать, что реализация более 1 ГГц технически трудно осуществима из-за влияния паразитных параметров трансформаторов на его характеристики [3].

Требуемое волновое сопротивление длинных линий разрабатываемого трансформатора рассчитывается по формуле [16, 17]:

. (2.6)

Методика изготовления длинных линий с заданным волновым сопротивлением описана в [18].

Входное сопротивление трансформатора, разработанного с учетом (2.4) – (2.6), равно:

. (2.7)

Пример 2.2. Рассчитать , , трансформатора на ферритовых сердечниках и длинных линиях с коэффициентом трансформации сопротивления 1:9, если = 50 Ом, = 5 кГц.

Решение. В качестве ферритовых сердечников трансформатора выберем кольца марки М2000НМ 20х10х5,имеющих параметры: *= 2000; d = 6 см; S = 0,5 см2. Из (2.5) – (2.7) определим: N = 3, = 16,7 Ом, = 250 МГц. Теперь по известным параметрам кольца из (2.4) найдем: n=16,7. То есть для создания трансформатора импедансов с = 5 кГц необходимо на каждом ферритовом кольце намотать не менее 17 витков. Длина одного витка длинной линии, намотанной на ферритовое кольцо, равна 3 см. Умножая это значение на 17, получим, что минимальная длина длинных линий должна быть не менее 51 см. С учетом необходимости соединения длинных линий между собой, с нагрузкой и выходом усилителя, следует длину каждой длинной линии увеличить на 2 .3 см.

2.3. ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ

При проектировании полосовых передатчиков средней и большой мощности, также как и при проектировании широкополосных, одной из основных является задача максимального использования по выходной мощности транзистора выходного каскада усилителя. Однако в этом случае между выходным каскадом и нагрузкой усилителя включается трансформатор импедансов, выполненный в виде фильтра нижних частот [3, 19, 20]. Чаще всего он выполняется в виде фильтра нижних частот четвертого порядка [19–23]. Принципиальная схема усилительного каскада с таким трансформатором приведена на рис. 2.3,а, эквивалентная схема по переменному току – на рис. 2.3,б, где элементы формируют трансформатор импедансов, обеспечивающий оптимальное, в смысле достижения максимального значения выходной мощности, сопротивление нагрузки транзистора и практически не влияют на форму АЧХ усилительного каскада. Методика расчета оптимального сопротивления нагрузки мощного транзистора дана в [2, 3, 24].

Наиболее полная и удобная для инженерных расчетов методика проектирования рассматриваемых трансформаторов импедансов приведена в [25, 26]. В таблице 2.2 представлены взятые из [26] нормированные относительно и значения элементов для относительной полосы рабочих частот трансформатора равной 0,2 и 0,4 и для коэффициента трансформации сопротивления лежащего в пределах 2 .30 раз, где = – входное сопротивление трансформатора в полосе его работы, = – средняя круговая частота полосы рабочих частот трансформатора.

а) б)

Рис. 2.3

Выбор w равной 0,2 и 0,4 обусловлен тем, что это наиболее часто реализуемая относительная полоса рабочих частот полосовых передатчиков средней и большой мощности, так как в этом случае перекрывается любой из каналов телевизионного вещания и диапазоны ЧМ и FM радиовещания [27].

Таблица 2.2 – Нормированные значения элементов трансформатора

 

2

3

4

6

8

10

15

20

30

w = 0,2

0,821

1,02

1,16

1,36

1,51

1,62

1,84

2,02

2,27

0,881

0,797

0,745

0,671

0,622

0,585

0,523

0,483

0,432

w = 0,4

0,832

1,04

1,19

1,40

1,56

1,69

1,95

2,15

2,46

0,849

0,781

0,726

0,649

0,598

0,559

0,495

0,453

0,399