Студентам > Рефераты > ПЛИС Xilinx семейства Virtex
ПЛИС Xilinx семейства VirtexСтраница: 9/15
Рис. 11. Последовательность битов ПС.
4.6.3. Идентификационные регистры
Имеются два идентификационных регистра: IDCODE-регистр и USER-CODE-регистр. IDCODE позволяет определить микросхему, подсоединенную к JTAG-nopry.
IDCODE имеет следующий двоичный формат:
vvvv : ffff: fffa : aaaa : аааа : сссс : сссс : ссс1,
где v — код корпуса, f— код семейства кристаллов (03h для семейства Virtex), а — число строк матрицы КЛБ (от 010h для XCV50 до 040h для XCV1000), с — код компании производителя (49h для фирмы «Xilinx»)
В Табл. 8 приведены идентификационные коды (IDCODEs), присвоенные кристаллам серии Virtex.
Используя USERCODE, пользователь может записать и считать свой идентификационный номер для данного проекта. Пользовательский идентификационный код включается в конфигурационный файл во время его создания. USERCODE может быть считан только после конфигурации кристалла.
Таблица 8. Идентификационные коды (IDCODEs), присвоенные кристаллам серии Virtex Кристалл | IDCODE | XCV50 | v0610093h | XCV100 | v0614093h | XCV150 | v0618093h | XCV200 | v061C093h | XCV300 | v0620093h | XCV400 | v0628093h | XCV600 | v0630093h | XCV800 | v0638093h | XCV1000 | v0640093h |
4.6.4. Включение ПС в проект
Так как все контакты, необходимые для ПС, предопределены в каждом кристалле, то не нужно включать в проект дополнительных элементов, если не будут использоваться пользовательские регистры (USER1 и USER2). Для задействования этих регистров в проект необходимо включить элемент BSCAN и соединить соответствующие выводы.
5. Система проектирования
Разработка кристаллов Virtex осуществляется программным обеспечением проектирования Xilinx Foundation и/или Xilinx Alliance. Процесс проектирования включает: ввод проекта, размещение в кристалл и верификацию. Для ввода проекта могут применяться стандартные электронные САПР, таких фирм, как «Aldec», «Cadence», «Simplicity», «Mentor Graphics» или «Synopsys». Для размещения в кристалл и верификации используются специализированные под архитектуру САПР, выпускаемые только фирмой «Xilinx».
Система проектирования фирмы «Xilinx» интегрирована в управляющую программу, называемую Xilinx Design Manager (XDM), которая обеспечивает доступ к общему пользовательскому интерфейсу, независимо от выбора вида программы ввода или верификации. Программа XDM упрощает выбор настроек, необходимых для выполнения проекта, благодаря наличию разветвленного меню и легко доступной справочной системе (on-line help).
Прикладные программы, начиная от создания схемы (schematic capture), до размещения и трассировки (Placement and Routing — PAR), доступны из программы XDM. Цепочка команд, определяющих последовательность обрабатывающих процессов, генерируется до начала их исполнения и запоминается для последующего документирования.
Несколько расширенных свойств программного обеспечения облегчает проектирование микросхем Virtex. Например, схемные относительно расположенные макросы (Relationally Placed Macros — RPMs), в которых содержится информация о принудительной взаимной ориентации составных частей элементов проекта, дают необходимую информацию для их реального размещения на кристалле. Они помогают обеспечить оптимальное выполнение стандартных логических функций.
Для ввода проектов с помощью языков описания аппаратных средств (Hardware Description Language — HDL), система проектирования Xilinx Foundation предоставляет интерфейсы к синтезаторам следующих фирм:
— «Synopsis» (FPGA Compiler, FPGA Express);
— «Exemplar» (Spectrum);
— «Symplicity» (Symplify).
Для схемного ввода проектов системы проектирования Xilinx Foundation и Alliance предоставляют интерфейсы к следующим системам создания схем:
— Mentor Graphics V8 (Design Architect Quick Sim II);
— Innoveda (Viewdraw).
Существует множество других производителей, которые предлагают аналогичные по функциям системы ввода проекта.
Для упрощения взаимодействия различных САПР существует стандартный формат файлов (EDIF), который поддерживается всеми производителями САПР.
САПР для Virtex включает унифицированную библиотеку стандартных функций. Эта библиотека содержит свыше 400 примитивов и макросов, от двухвходовых вентилей И, до 16-битовых аккумуляторов и включает арифметические функции, компараторы, счетчики, регистры данных, дешифраторы, шифраторы, функции ввода-вывода, защелки, булевы функции, мультиплексоры и сдвигающие регистры.
Часть библиотеки, содержащей детальные описания общих логических функций, реализованных в виде «нежестких» макросов (soft macro), не содержит никакой информации о разбиении этих функций на реальные физические блоки и об их размещении в кристалле. Быстродействие данных макросов зависит, таким образом, от этих двух процедур, которые реализуются на этапе размещения проекта в кристалл. В то же время относительно расположенные макросы (RPMs) содержат в себе предварительно определенную информацию о разбиении на физические блоки и о размещении, которая дает возможность для оптимального выполнения этих функций. Пользователи могут создать свою собственную библиотеку «нежестких» макросов и RPM из примитивов и макросов стандартной библиотеки".
Среда проектирования поддерживает ввод иерархических проектов, в которых схемы верхнего уровня содержат основные функциональные блоки, в то время как системы нижнего уровня определяют логические функции этих блоков. Данные элементы иерархического проекта автоматически объединяются соответствующими средствами на этапе размещения в кристалл. При иерархической реализации могут объединяться различные средства ввода проекта, давая возможность каждую из частей вводить наиболее подходящим для нее методом.
5.1. Размещение проекта в кристалл
Программное средство размещения и трассировки (place and route — PAR) обеспечивает автоматическое протекание процесса размещения проекта в кристалл, которое описывается ниже. Процедура разбиения на физические блоки получает исходную информацию о проекте в виде перечня связей формата EDIF и осуществляет привязку абстрактных логических элементов к реальным физическим ресурсам архитектуры FPGA (БВВ, КЛБ). Затем процедура размещения определяет наилучшее место для их размещения, руководствуясь информацией о межсоединениях и желаемом быстродействии. В завершении, процедура трассировки выполняет соединения между блоками.
|