Студентам > Рефераты > Введение в микроэлектронику
Введение в микроэлектроникуСтраница: 10/15
1 — металлическое межсоединение; 2 — слой SiO2; А, Б, В, — соответствующие друг другу точки на рис. а и б.
При конструировании ИС стремятся применять диоды эквивалентные переходам эмиттер-база или коллектор-база транзисторной структуры. В этом случае диоды изготавливают в едином технологическом цикле с остальными элементами.
Соединение элементов в полупроводниковой ИС может осуществляться несколькими способами, основным из которых является нанесение металлических тонкопленочных проводящих дорожек (чаще всего алюминиевых), изолированных от элементов кристалла слоем диэлектрика, чаще всего оксида кремния SiO2; с помощью проволочных соединений.
Количество кристаллов ИС, получаемых в едином технологическом процессе на одной пластине, чаще всего кремния, зависит от размера кристалла, в свою очередь зависящего от количества элементов в схеме, и диаметра пластин. Площадь кристалла ИС в зависимости от ее сложности составляет 1 .100 мм2, наиболее распространены размеры 10 .50 мм2.
6.3. Элементы ИС на МДП-структуре.
В качестве активных элементов в ИС могут использоваться кроме биполярных полевые транзисторы со структурой «металл-диэлектрик (оксид)-полупроводник», т.е. МДП-транзисторы или МОП-транзисторы. В соответствии с этим все монолитные ИС разделяются на три основных вида: МДП ИС (МОП ИС), биполярные и биполярно-полевые ИС. МДП ИС могут быть реализованы на транзисторах с каналом p-типа (p-МДП ИС, p-МОП ИС) и каналом n-типа (n-МДП ИС, n-МОП ИС), а также на комплементарных, т. е. использующих одновременно p- и n-типы, МДП-транзисторах (КМДП ИС, КМОП ИС). Биполярно-полевые ИС представляют собой объединенные в одном кристалле биполярные и КМДП ИС (БиКМДП ИС, БиКМОП ИС).
Основными элементами современных МДП ИС являются МДП-транзисторы с каналом n-типа. Площадь этих транзисторов на кристалле значительно меньше, чем биполярных, поэтому в ИС на n-канальных МДП-резисторах достигается самая высокая (в 3-10 раз) степень интеграции, но они уступают биполярным ИС по быстродействию.
Рис. 6.2. Схема полевого транзистора с резистором: а - эквивалентная схема; б - топология МОП-резистора
В комплементарных МДП ИС применяют МДП-транзисторы с индуцированными каналами n- и р-типа, для этих ИС характерна очень малая потребляемая мощность.
МОП-транзистор может использоваться в качестве конденсатора и резистора, при этом значение емкости и сопротивления можно изменять в определенных пределах путем изменения потенциала на управляющем электроде (т. е. на затворе).
В качестве резистора МДП-транзистор используется при Uзи=0, т. е. при этом сопротивление канала имеет наибольшее значение. Сопротивление между выводами стока и истока в этом случае обратно пропорционально отношению ширины канала b к его длине L, т. е. b/L. Эта зависимость позволяет проводить расчет топологии для получения необходимого сопротивления резистора.
На рис. 6.2 приведена схема МДП-транзистора, используемого в качестве резистора. Структура МДП-конденсатора показана на рис. 6.3. Диэлектриком в этом конденсаторе является термически выращенная пленка диоксида кремния SiO2. Одним из электродов является пленка напыленного металла на SiO2, являющимся диэлектриком, другим — сильнолегированная n+-область кремния, лежащая под оксидом. Высокоомный n-слой и p-кремний подложки образуют изолирующий p-n-переход. Емкость МДП-конденсатора зависит прямо пропорционально площади и обратно пропорциональна толщине оксидной пленки. Уменьшение толщины оксидной пленки для получения емкости большей величины имеет ограничения, так как неоднородность структуры очень тонкой пленки может привести к замыканию обкладок конденсатора.
Рис.6.3. МДП-конденсатор
Изготавливают МДП ИС методами планарной технологии. Трудоемкость изготовления МДП ИС на 30% ниже, чем биполярных ИС, так как технологический цикл изготовления МДП ИС состоит из 22 основных операций, а биполярных ИС — из 32.
Контрольные вопросы:
1. Дайте определение интегральной схемы.
2. Как различают ИС по технологии изготовления?
3. Расскажите о делении ИС по степени интеграции.
4. Как различают ИС по функциональному назначению?
5. Расскажите об элементах биполярных ИС.
6. Расскажите об элементах ИС на МДП-структурах.
Глава 7. Большие интегральные схемы.
7.1. Общие положения.
Ранее говорилось, что большими интегральными схемами называют полупроводниковые ИС, содержащие более 103 элементов на кристалл.
Развитие современных технологических процессов изготовления ИС позволяет значительно уменьшать минимальные технологические размеры с одновременным увеличением размеров кристалла, т.е. создавать ИС с большой степенью интеграции, называемые большими интегральными (БИС).
БИС являются сложными схемами, реализующими узлы и целые электронные устройства. Различают монолитные и гибридные БИС. Среди монолитных БИС наибольшее распространение получили полупроводниковые БИС на основе МДП-структур, что обусловлено малыми размерами их активных элементов, а также более простой технологией изготовления по сравнению с монолитными БИС на основе биполярных структур.
По функциональному назначению различают БИС, предназначенные для использования в микропроцессорных комплектах в качестве запоминающих устройств, аналого-цифровых и цифровых преобразователей, усилителей и др. БИС являются основной элементной базой микро-ЭВМ, а также широко используются для создания ЭВМ других типов, что обеспечивает повышение их надежности, уменьшение габаритных размеров и массы, а также существенное снижение потребляемой ими мощности.
То есть по функциональному назначению БИС также могут быть цифровыми, или логическими, и аналоговыми, или линейными. К первым относятся декадные счетчики, накапливающие сумматоры, полные арифметические блоки, упоминаемые ранее запоминающие устройства и др.
Специальные БИС для ЭВМ, выполняющие не логические функции, т.е. аналоговые, имеют очень большую номенклатуру. К этим БИС можно отнести усилители записи и считывания различных запоминающих устройств (ЗУ), преобразователи уровней, времязадающие схемы, схемы стабилизаторов напряжений, дифференциальные операционные усилители, компараторы, усилители индикации и др.
Для преобразования аналоговых сигналов в цифровой эквивалент используют аналого-цифровые преобразователи (АЦП), а для обратного преобразования цифровых уровней в аналоговые — цифроаналоговые преобразователи (ЦАП).
АЦП — это электронное устройство, осуществляющее автоматическое преобразование непрерывно изменяющейся аналоговой величины в цифровой код. Процесс аналого-цифрового преобразования в общем случае включает процедуры квантования (дискретизация непрерывной величины по времени, уровню или обоим параметрам одновременно) и кодирования.
|