_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Введение в микроэлектронику

Введение в микроэлектронику

Страница: 9/15

Проведение диффузионных процессов происходит с использованием процессов фотолитографии.

Контрольные вопросы:

1. Что называется транзистором?

2. Какие типы транзисторов Вы знаете?

3. Нарисуйте структуру биполярного плоскостного транзистора.

4. Чем отличаются транзисторы p-n-p и n-p-n типов?

5. Какие требования необходимо соблюдать в биполярных плоскостных транзисторах?

6. Нарисуйте структуру полевого транзистора с одним управляющим p-n-переходом.

7. Нарисуйте структуру полевого транзистора с двумя управляющими p-n-переходами.

8. Расскажите о принципе работы полевого транзистора.

9. Нарисуйте разрез структуры МДП-транзистора со встроенным каналом.

10. Нарисуйте разрез структуры МДП-транзистора с индуцированным каналом.

11. Расскажите о принципе работы МДП-транзистора.

12. Что такое планарные переходы?

13. Какова последовательность основных технологических этапов получения диффузионного планарного транзистора?

Глава 6. Интегральные схемы.

6.1. Общие понятия.

Блоки и узлы радиоэлектронной аппаратуры на втором этапе развития электронной техники (после электронных ламп) строились на полупроводниковых приборах. Но воз­никла мысль, а можно ли отдельные блоки и узлы создать в одном корпусе на одной подложке или в одном кристалле полупроводника. Эта идея начала реализовываться в миро­вой промышленности с конца шестидесятых годов.

Интегральная схема (ИС) — это конструктивно за­конченное изделие электронной техники, выполняющее опре­деленную функцию, и содержащее совокупность транзисторов, полупроводниковых диодов, резисторов, конденсаторов и дру­гих элементов, электрически соединенных между собой.

Теория, методы расчета и технология изготовления ИС составляют основное содержание микроэлектроники.

По технологии изготовления различают полупроводниковые (т. е. монолитные), пленочные и гибридные ИС.

В полупроводниковой ИС все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника, обычно кремния. Как правило, для полупроводниковых ИС характерно создание всех элементов одновременно в ходе единого технологического цикла.

В пленочных ИС все элементы и межэлементные соеди­нения выполнены в виде проводящих, диэлектрических и резистивных пленок (слоев) на подложке. Такие ИС содержат, как правило, только пассивные элементы (резисторы, конденсаторы, катушки индуктивности, межсоединения). Вариантами пленочных ИС являются тонкопленочные с толщиной пленок 1 .3 мкм и менее и толстопленочные с толщиной пленок свыше 3 .5 мкм. Деление пленочных ИС обусловлено не столько толщиной пленок, сколько методом их нанесения в процессе создания пассивных элемен­тов. Пассивные элементы тонкопленочных схем наносят на подложку преимущественно с использованием термовакуумного распыления и катодного осаждения, а пассивны элементы толстопленочных схем получают нанесением и вжиганием проводящих и резистивных паст.

Наряду с полупроводниковой и пленочной широко используется гибридная технология, в которой сочетаются тонкопленочные или пассивные толстопленочные элемен­ты с полупроводниковыми активными, называемыми ком­понентами гибридной схемы. Частным случаем гибридной ИС является многокристальная ИС, содержащая в качестве компонентов несколько бескорпусных полупроводни­ковых схем на одной подложке. Наиболее распространены в настоящее время полупроводниковые и гибридные ИС.

Число элементов в данной ИС характеризует ее степень интеграции. В соответствии со степенью интеграции все ИС условно делят на малые (МИС — до 102 элементов на кри­сталл), средние (СИС — до 103), большие (БИС — до 104), сверхбольшие (СБИС — до 106), ультрабольшие (УБИС — до 109) и гигабольшие (ГБИС — более 109 элементов на кри­сталл). Иногда степень интеграции определяют величиной k=lgN, где N — число элементов, входящих в ИС, а значение k определяется до ближайшего целого числа в сторону увеличения. Например, ИС первой степени интеграции (k = l) со­держит до 10 элементов, второй степени интеграции (k = 2) — свыше 10 до 100, третьей степени интеграции (k = 3) — свыше 100 до 1000 и т. д.

При всем своем многообразии ИС по функциональному назначению делятся на два основных класса — аналоговые (частный случай — линейные) и цифровые. Аналоговые ИС предназначены для усиления, ограничения, частотной филь­трации, сравнения и переключения сигналов, изменяющих­ся по закону непрерывной функции.

Цифровые ИС предназначены для преобразования (обра­ботки) сигналов, изменяющихся по закону дискретной фун­кции (например, выраженных в двоичном или другом циф­ровом коде). Цифровые ИС представляют собой множество транзисторных ключей, обладающих двумя устойчивыми состояниями (разомкнутым и замкнутым). Основным видом цифровых схем являются логические ИС, выполняю­щие одну или несколько логических функций, простейши­ми из которых реализуются такие функции, как «И», «ИЛИ», «НЕ» и др.

Полупроводниковые ИС по конструктивно-технологичес­кому принципу бывают биполярные, т. е. использующие биполярные транзисторы, и МДП, т. е. построенные на МДП-транзисторах. Кристаллом ИС называется структура, содержащая элементы, межэлементные соединения и контактные площадки (металлизированные участки, служащие для присоединения внешних выводов). В большинстве полупроводниковых ИС элементы располагаются в тонком (тол­щина 0,5 . 10 мкм) приповерхностном слое полупроводни­ка. Так как удельное сопротивление полупроводника неве­лико (1 .10 Ом), а элементы должны быть изолированы друг от друга, необходимы специальные изолирующие области.

6.2. Элементы биполярных полупроводниковых ИС.

Типичная структура полупроводниковой ИС, выполненная по биполярной технологии, показана на рис. 6.1. В такой ИС отдельные элементы, сформированные в «карма­нах» с проводимостью n-типа, оказываются электрически изолированными друг от друга обратносмещенным p-n-переходом, для чего на подложку p-типа кремния подается отрицательный потенциал. Предварительно создаваемые локальные области (называемые «карманами») служат для исключения взаимного влияния активных и пассивных элементов и могут быть изолированы друг от друга кроме p-n-переходом диэлектриком или комбинированным мето­дом с применением p-n-переходов и диэлектрика.

В качестве резисторов в биполярных ИС используют уча­стки однородного полупроводника; в качестве конденсато­ров — обратносмещенные p-n-переходы. Индуктивность не создается в толще полупроводника, а может наноситься в виде спирали из металла на поверхности полупроводника.

Диоды и транзисторы, используемые в ИС, изготовляют по планарной технологии, то есть их выводы находятся на одной поверхности. Планарная технология позволяет в те­чение единого технологического процесса получать одно­временно различные элементы.

Рис. 6.1. Интегральная схема с изоляцией р-n-переходом:

а — электрическая схема; б — топология;