Студентам > Рефераты > Введение в микроэлектронику
Введение в микроэлектроникуСтраница: 9/15
Проведение диффузионных процессов происходит с использованием процессов фотолитографии.
Контрольные вопросы:
1. Что называется транзистором?
2. Какие типы транзисторов Вы знаете?
3. Нарисуйте структуру биполярного плоскостного транзистора.
4. Чем отличаются транзисторы p-n-p и n-p-n типов?
5. Какие требования необходимо соблюдать в биполярных плоскостных транзисторах?
6. Нарисуйте структуру полевого транзистора с одним управляющим p-n-переходом.
7. Нарисуйте структуру полевого транзистора с двумя управляющими p-n-переходами.
8. Расскажите о принципе работы полевого транзистора.
9. Нарисуйте разрез структуры МДП-транзистора со встроенным каналом.
10. Нарисуйте разрез структуры МДП-транзистора с индуцированным каналом.
11. Расскажите о принципе работы МДП-транзистора.
12. Что такое планарные переходы?
13. Какова последовательность основных технологических этапов получения диффузионного планарного транзистора?
Глава 6. Интегральные схемы.
6.1. Общие понятия.
Блоки и узлы радиоэлектронной аппаратуры на втором этапе развития электронной техники (после электронных ламп) строились на полупроводниковых приборах. Но возникла мысль, а можно ли отдельные блоки и узлы создать в одном корпусе на одной подложке или в одном кристалле полупроводника. Эта идея начала реализовываться в мировой промышленности с конца шестидесятых годов.
Интегральная схема (ИС) — это конструктивно законченное изделие электронной техники, выполняющее определенную функцию, и содержащее совокупность транзисторов, полупроводниковых диодов, резисторов, конденсаторов и других элементов, электрически соединенных между собой.
Теория, методы расчета и технология изготовления ИС составляют основное содержание микроэлектроники.
По технологии изготовления различают полупроводниковые (т. е. монолитные), пленочные и гибридные ИС.
В полупроводниковой ИС все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника, обычно кремния. Как правило, для полупроводниковых ИС характерно создание всех элементов одновременно в ходе единого технологического цикла.
В пленочных ИС все элементы и межэлементные соединения выполнены в виде проводящих, диэлектрических и резистивных пленок (слоев) на подложке. Такие ИС содержат, как правило, только пассивные элементы (резисторы, конденсаторы, катушки индуктивности, межсоединения). Вариантами пленочных ИС являются тонкопленочные с толщиной пленок 1 .3 мкм и менее и толстопленочные с толщиной пленок свыше 3 .5 мкм. Деление пленочных ИС обусловлено не столько толщиной пленок, сколько методом их нанесения в процессе создания пассивных элементов. Пассивные элементы тонкопленочных схем наносят на подложку преимущественно с использованием термовакуумного распыления и катодного осаждения, а пассивны элементы толстопленочных схем получают нанесением и вжиганием проводящих и резистивных паст.
Наряду с полупроводниковой и пленочной широко используется гибридная технология, в которой сочетаются тонкопленочные или пассивные толстопленочные элементы с полупроводниковыми активными, называемыми компонентами гибридной схемы. Частным случаем гибридной ИС является многокристальная ИС, содержащая в качестве компонентов несколько бескорпусных полупроводниковых схем на одной подложке. Наиболее распространены в настоящее время полупроводниковые и гибридные ИС.
Число элементов в данной ИС характеризует ее степень интеграции. В соответствии со степенью интеграции все ИС условно делят на малые (МИС — до 102 элементов на кристалл), средние (СИС — до 103), большие (БИС — до 104), сверхбольшие (СБИС — до 106), ультрабольшие (УБИС — до 109) и гигабольшие (ГБИС — более 109 элементов на кристалл). Иногда степень интеграции определяют величиной k=lgN, где N — число элементов, входящих в ИС, а значение k определяется до ближайшего целого числа в сторону увеличения. Например, ИС первой степени интеграции (k = l) содержит до 10 элементов, второй степени интеграции (k = 2) — свыше 10 до 100, третьей степени интеграции (k = 3) — свыше 100 до 1000 и т. д.
При всем своем многообразии ИС по функциональному назначению делятся на два основных класса — аналоговые (частный случай — линейные) и цифровые. Аналоговые ИС предназначены для усиления, ограничения, частотной фильтрации, сравнения и переключения сигналов, изменяющихся по закону непрерывной функции.
Цифровые ИС предназначены для преобразования (обработки) сигналов, изменяющихся по закону дискретной функции (например, выраженных в двоичном или другом цифровом коде). Цифровые ИС представляют собой множество транзисторных ключей, обладающих двумя устойчивыми состояниями (разомкнутым и замкнутым). Основным видом цифровых схем являются логические ИС, выполняющие одну или несколько логических функций, простейшими из которых реализуются такие функции, как «И», «ИЛИ», «НЕ» и др.
Полупроводниковые ИС по конструктивно-технологическому принципу бывают биполярные, т. е. использующие биполярные транзисторы, и МДП, т. е. построенные на МДП-транзисторах. Кристаллом ИС называется структура, содержащая элементы, межэлементные соединения и контактные площадки (металлизированные участки, служащие для присоединения внешних выводов). В большинстве полупроводниковых ИС элементы располагаются в тонком (толщина 0,5 . 10 мкм) приповерхностном слое полупроводника. Так как удельное сопротивление полупроводника невелико (1 .10 Ом), а элементы должны быть изолированы друг от друга, необходимы специальные изолирующие области.
6.2. Элементы биполярных полупроводниковых ИС.
Типичная структура полупроводниковой ИС, выполненная по биполярной технологии, показана на рис. 6.1. В такой ИС отдельные элементы, сформированные в «карманах» с проводимостью n-типа, оказываются электрически изолированными друг от друга обратносмещенным p-n-переходом, для чего на подложку p-типа кремния подается отрицательный потенциал. Предварительно создаваемые локальные области (называемые «карманами») служат для исключения взаимного влияния активных и пассивных элементов и могут быть изолированы друг от друга кроме p-n-переходом диэлектриком или комбинированным методом с применением p-n-переходов и диэлектрика.
В качестве резисторов в биполярных ИС используют участки однородного полупроводника; в качестве конденсаторов — обратносмещенные p-n-переходы. Индуктивность не создается в толще полупроводника, а может наноситься в виде спирали из металла на поверхности полупроводника.
Диоды и транзисторы, используемые в ИС, изготовляют по планарной технологии, то есть их выводы находятся на одной поверхности. Планарная технология позволяет в течение единого технологического процесса получать одновременно различные элементы.
Рис. 6.1. Интегральная схема с изоляцией р-n-переходом: а — электрическая схема; б — топология;
|