Студентам > Рефераты > Введение в микроэлектронику
Введение в микроэлектроникуСтраница: 11/15
Цифроаналоговый преобразователь (ЦАП) — это электронное устройство, осуществляющее автоматическое преобразование числовых кодов в эквивалентные им значения какой-либо физической величины. Выходные физические величины чаще всего представляют собой временные интервалы электрического напряжения или тока.
Развитие техники АЦП и ЦАП осуществлялось поэтапно — от простых наборов ИС, на базе которых конструировали преобразователи, до создания БИС АЦП и БИС ЦАП по различным технологиям.
Отечественной промышленностью серийно выпускались БИС ЦАП типов: К572ПА, К572ПА1, КР572ПА2, К594ПА1, К1108ПА1, К1118ПА1, и БИС АЦП типов: К572ПВ1, К572ПВ2, К1113ПВ1, К1107ПВ1, К1107В2, К1107ПВЗ, К1108ПВ1. Указанные БИС изготовлялись по технологии МОП или биполярной с использованием транзисторно-транзисторной логики.
7.2. Микропроцессоры и микропроцессорные комплекты.
Увеличение уровня интеграции ИС и улучшение их технико-экономических характеристик позволили использовать вычислительные устройства во многих областях: от устройств промышленного оборудования и контрольно-испытательной аппаратуры до ЭВМ. Процесс применения ИС для построения различной вычислительной техники значительно ускорился с применением микропроцессоров.
Название «микропроцессор» связано с исполнением процессора на одном или нескольких кристаллах полупроводниковой ИС. Микропроцессоры служат главными функциональными частями микро-ЭВМ, которые реализуются на БИС. Подготовительным этапом развития микропроцессоров стали микрокалькуляторы. Именно на них были отработаны технологические, схемо-технологические и архитектурные решения, которые широко использовались в дальнейшем при создании первых микропроцессоров.
Микропроцессор — самостоятельное или входящее в состав ЭВМ (электронно-вычислительной машины) устройство, осуществляющее обработку информации и управляющее этим процессом, выполненное в виде одной или нескольких БИС. В общем случае в состав микропроцессора
входят: арифметико-логическое устройство (АЛУ), блок управления и синхронизации, запоминающее устройство (ЗУ), регистры и другие блоки.
АЛУ осуществляет обработку поступающей от ЗУ информации по командам программы, хранящейся постоянно в ЗУ, порядок выполнения которых определяется блоком управления и синхронизации. Исходные данные, промежуточные и окончательные результаты вычислений содержатся в ЗУ или в специальных регистрах. Часть регистров используется для организации выполнения программ.
Как БИС микропроцессоры характеризуются степенью интеграции, потребляемой мощностью, помехоустойчивостью, нагрузочной способностью активных выводов, т. е. возможностью подключения к данному микропроцессору и других ИС, технологией изготовления, типом корпуса, устойчивостью к различным внешним воздействиям.
Как вычислительное устройство микропроцессоры характеризуются производительностью, разрядностью обрабатываемых данных и выполняемых команд, возможностью увеличения разрядности, числом команд, количеством внутренних регистров, объемом адресуемой памяти, наличием и видом программного обеспечения, способом управления и др.
Микропроцессоры, используемые в средствах вычислительной техники различного назначения, называются универсальными, а предназначенные для построения какого-либо одного типа вычислительного устройства, называются специализированными. К последним относятся микропроцессоры, используемые в микрокалькуляторах.
По структуре микропроцессоры подразделяются на секционированные (как правило, с микропрограммным управлением) и однокристальные (с фиксированной разрядностью и постоянным набором команд). Секционированные микропроцессоры обладают способностью к расширению своих функциональных возможностей за счет подключения дополнительных ИС.
Однокристальный микропроцессор с фиксированной разрядностью и с постоянным набором команд конструктивно исполняются в виде одной БИС. Такой микропроцессор выполняет функции процессора ЭВМ, все операции которого определяются хранящимися в его памяти командами. Особенность однокристального микропроцессора — наличие внутренней шины, по которой происходит обмен информацией между устройствами микропроцессора.
Рис. 7.1. Состав микропроцессорного комплекта интегральных схем
По функциональным возможностям микропроцессор соответствует процессору ЭВМ, выполненному на 20-40 ИС малой и средней степени интеграции, но обладает большим быстродействием, существенно меньшими размерами, массой, потребляемой мощностью.
Применение различных схемо-технологических методов при изготовлении микропроцессоров позволяет, например, получать на основе р-МОП-схем до 80 тыс. операций/с, n-МОП-схем — 500 .600 тыс. оп/с, КМОП-схем 400 тыс. оп./с, ЭСТЛ-схем — 3 млн. оп/с.
Совокупность конструктивно и электрически совместимых ИС, предназначенных для построения микропроцессоров, микро-ЭВМ и других вычислительных устройств с определенным составом и требуемыми технологическими характеристиками, есть микропроцессорный комплект интегральных схем.
Основа микропроцессорного комплекта интегральных схем — базовый комплект, который может состоять либо из одной БИС — однокристального микропроцессора с фиксированной разрядностью и постоянным набором команд, либо из набора ИС — многокристального секционированного микропроцессора МП (рис.7.1).
Для расширения функциональных возможностей МП базовый комплект дополняется ИС других типов, например запоминающими устройствами, интерфейсными ИС, контроллерами внешних устройств. Эти ИС могут быть одной серии с ИС базового комплекта или разных.
Контрольные вопросы:
1. Какие ИС называют большими? Их деление по конструкции, технологии и функциональному назначению?
2. Дайте определение схем АЦП.
3. Дайте определение схем ЦАП.
4. Какую схему БИС называют микропроцессором?
5. Какие микропроцессоры называют универсальными и специализированными?
6. Расскажите о микропроцессорном комплекте ИС.
Глава 8. Технологический процесс изготовления ИС.
Производственный процесс изготовления ИС можно разделить на три участка: участок формирования структур на пластине, участок сборки и участок выходного контроля.
Технологические процессы изготовления изделий в большинстве своем непрерывно-дискретные.
Непрерывные технологические процессы не могут быть прерваны до их окончания. В случае их прерывания раньше окончание процесса в большинстве случаев изделие уходит в брак. Например, аварийное отключение печей при проведении диффузионных процессов практически приводит к браку всей партии пластин.
Дискретные технологические процессы разделяются на отдельные операции. Эти процессы можно останавливать на определенное для каждого процесса время и после некоторого перерыва можно продолжать далее. Последствия такого перерыва в ходе процесса практически не отражаются на качестве изготовляемых изделий.
|