Студентам > Рефераты > Схемотехника аналоговых электронных устройств
Схемотехника аналоговых электронных устройствСтраница: 25/45
В качестве модулятора можно использовать управляемые ключевые схемы, выполненные обычно на ПТ. Простейшим демодулятором является обычный двухполупериодный выпрямитель с фильтром на выходе. Следует заметить, что существует большое многообразие схемных решений как модуляторов, так и демодуляторов, рассмотрение которых не позволяет ограниченный объем данного пособия.
В качестве недостатков УПТ с преобразованием сигнала следует отнести проблему реализации модуляторов малого уровня входного сигнала и повышенную сложность схемы.
Достичь существенного улучшения электрических, эксплуатационных и массогабаритных показателей УПТ можно за счет их построения на основе балансных схем.
5.3. Дифференциальные усилители
В настоящее время наибольшее распространение получили УПТ на основе дифференциальных (параллельно-балансных или разностных) каскадов. Такие усилители просто реализуются в виде монолитных ИМС и широко выпускаются промышленностью (КТ118УД, КР198УТ1 и др.). На рисунке 5.5 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ) на БТ.
Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами и , а два других - транзисторами и . Сопротивление нагрузки включено в диагональ моста. Резисторы цепи ПООСТ и обычно невелики или вообще отсутствуют, поэтому можно считать, что резистор подключен к эмиттерам транзисторов.
Двухполярное питание позволяет обойтись на входах (выходах) ДУ без мостовых схем за счет снижения потенциалов баз (коллекторов) до потенциала общей шины.
Рассмотрим работу ДУ для основного рабочего режима - дифференциального. За счет действия транзистор приоткрывается, и его ток эмиттера получает приращение , а за счет действия транзистор призакрывается, и ток его эмиттера получает отрицательное приращение . Следовательно, результирующее приращение тока в цепи резистора при идеально симметричных плечах близко к нулю и, следовательно, ООС для дифференциального сигнала отсутствует.
При анализе ДУ выделяют два плеча, представляющие собой каскады с ОЭ, в общую цепь эмиттеров транзисторов которых включен общий резистор , которым и задается их общий ток. В связи с этим представляется возможным при расчете частотных и временных характеристик ДУ пользоваться соотношениями подразделов 2.5 и 2.12 с учетом замечаний, приведенных в подразделе 4.4. Например, коэффициент усиления дифференциального сигнала будет равен в случае симметрии плеч (см. подраздел 4.4) , т.е. дифференциальный коэффициент усиления равен коэффициенту усиления каскада с ОЭ.
ДУ отличает малый дрейф нуля, большой коэффициент усиления дифференциального (противофазного) сигнала и большой коэффициент подавления синфазных помех, т.е. малый коэффициент передачи синфазного сигнала .
Для обеспечения качественного выполнения этих функций необходимо выполнить два основных требования. Первое из них состоит в обеспечении симметрии обоих плеч ДУ. Приблизиться к выполнению этого требования позволила микроэлектроника, поскольку только в монолитной ИМС близко расположенные элементы действительно имеют почти одинаковые параметры с одинаковой реакцией на воздействие температуры, старения и т.п.
Второе требование состоит в обеспечении глубокой ООС для синфазного сигнала. В качестве синфазного сигнала для ДУ выступают помехи, наводки, поступающие на входы в фазе. Поскольку создает глубокую ПООСТ для обоих плеч ДУ, то для синфазного сигнала будет наблюдаться значительное уменьшение коэффициентов передачи каскадов с ОЭ, образующих эти плечи.
Коэффициент усиления каждого плеча для синфазного сигнала можно представить как каскада с ОЭ при глубокой ООС. Согласно подраздела 3.2 имеем: , .
Теперь можно записать для всего ДУ: ,
где .
Для оценки подавления синфазного сигнала вводят коэффициент ослабления синфазного сигнала (КОСС), равный отношению модулей коэффициентов передач дифференциального и синфазного сигналов.
Из сказанного следует, что увеличение КОСС возможно путем уменьшения разброса номиналов резисторов в цепях коллекторов (в монолитных ИМС - не более 3%) и путем увеличения . Однако увеличение требует увеличения напряжения источника питания (что неизбежно приведет к увеличению рассеиваемой тепловой мощности в ДУ), и не всегда возможно из-за технологических трудностей реализации резисторов больших номиналов в монолитных ИМС.
Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является источник стабильного тока (ИСТ), варианты схем которого приведены на рисунке 5.6.
ИСТ подключается вместо (см. рисунок 5.5), а заданный ток и термостабильность обеспечивают элементы , , и (рисунок 5.6а), и (рисунок 5.6б). Для реальных условий ИСТ представляет собой эквивалент сопротивления для изменяющегося сигнала номиналом до единиц мегом, а в режиме покоя - порядка единиц килоом, что делает ДУ экономичным по питанию.
|