Студентам > Рефераты > Схемотехника аналоговых электронных устройств
Схемотехника аналоговых электронных устройствСтраница: 35/45
В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).
Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.
Операторная функция представляет собой отношение полиномов: K(p)=A(p)/B(p),
и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.
Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи: ,
где f(х) - функция фильтрации; - нормированная частота; - частота среза фильтра; e - допустимое отклонение в полосе пропускания.
В зависимости от того, какая функция принимается в качестве f(х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.
Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде: ,
где n - порядок фильтра.
Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.
Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.
Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.
Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.
В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.
Для ФВЧ (рисунок 7.16а) коэффициент передачи равен: ,
где .
Частоту сопряжения асимптот находят из условия , откуда .
Для ФНЧ (рисунок 7.16б) имеем: , .
где .
В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.
Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.
Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот. В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны [13]:
¨ для ФНЧ: ;
¨ для ФВЧ: ;
¨ для ПФ: .
Для ПФ резонансная частота равна: .
Для ФНЧ и ФВЧ частоты среза соответственно равны: ; .
Довольно часто ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте (рисунок 7.18б).
Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов и , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q»2000.
Резонансная частота двойного Т-образного моста при и , и моста Вина при и , равна , и ее выбирают исходя из условия устойчивости , т.к. коэффициент передачи моста Вина на частоте равен 1/3.
|